346 lines
9.7 KiB
Markdown
346 lines
9.7 KiB
Markdown
# AI Engine Implementation - Complete
|
|
|
|
## Overview
|
|
The AI Engine app has been fully implemented with sentiment analysis capabilities, API endpoints, UI views, and integration-ready architecture.
|
|
|
|
## Components Implemented
|
|
|
|
### 1. Service Layer (`services.py`)
|
|
- **SentimentAnalysisService**: Core sentiment analysis with stub implementation
|
|
- Language detection (English/Arabic)
|
|
- Sentiment scoring (-1 to +1)
|
|
- Keyword extraction
|
|
- Entity recognition
|
|
- Emotion detection
|
|
- Confidence calculation
|
|
- **AIEngineService**: Facade for all AI capabilities
|
|
- Ready for integration with OpenAI, Azure, AWS, or custom ML models
|
|
|
|
### 2. Models (`models.py`)
|
|
- **SentimentResult**: Stores sentiment analysis results
|
|
- Generic foreign key for linking to any model
|
|
- Comprehensive fields for sentiment, keywords, entities, emotions
|
|
- Metadata and processing information
|
|
|
|
### 3. API Layer
|
|
|
|
#### Serializers (`serializers.py`)
|
|
- `SentimentResultSerializer`: Full sentiment result serialization
|
|
- `AnalyzeTextRequestSerializer`: Text analysis request validation
|
|
- `AnalyzeTextResponseSerializer`: Analysis response formatting
|
|
- `BatchAnalyzeRequestSerializer`: Batch analysis requests
|
|
- `SentimentStatsSerializer`: Statistics aggregation
|
|
|
|
#### Views (`views.py`)
|
|
- `SentimentResultViewSet`: Read-only API for sentiment results
|
|
- List with filters
|
|
- Retrieve specific result
|
|
- Statistics endpoint
|
|
- `analyze_text`: POST endpoint for single text analysis
|
|
- `analyze_batch`: POST endpoint for batch analysis
|
|
- `get_sentiment_for_object`: GET sentiment for specific object
|
|
|
|
### 4. UI Layer
|
|
|
|
#### Forms (`forms.py`)
|
|
- `AnalyzeTextForm`: Manual text analysis form
|
|
- `SentimentFilterForm`: Advanced filtering for results
|
|
|
|
#### UI Views (`ui_views.py`)
|
|
- `sentiment_list`: List view with pagination and filters
|
|
- `sentiment_detail`: Detailed sentiment result view
|
|
- `analyze_text_view`: Manual text analysis interface
|
|
- `sentiment_dashboard`: Analytics dashboard
|
|
- `reanalyze_sentiment`: Re-analyze existing results
|
|
|
|
#### Templates
|
|
- `sentiment_list.html`: Results list with statistics
|
|
- `sentiment_detail.html`: Detailed result view
|
|
- `analyze_text.html`: Text analysis form
|
|
- `sentiment_dashboard.html`: Analytics dashboard
|
|
|
|
### 5. Utilities (`utils.py`)
|
|
- Badge and icon helpers
|
|
- Sentiment formatting functions
|
|
- Trend calculation
|
|
- Keyword aggregation
|
|
- Distribution analysis
|
|
|
|
### 6. Admin Interface (`admin.py`)
|
|
- Full admin interface for SentimentResult
|
|
- Custom displays with badges
|
|
- Read-only (results created programmatically)
|
|
|
|
### 7. URL Configuration (`urls.py`)
|
|
- API endpoints: `/ai-engine/api/`
|
|
- UI endpoints: `/ai-engine/`
|
|
- RESTful routing with DRF router
|
|
|
|
## API Endpoints
|
|
|
|
### REST API
|
|
```
|
|
GET /ai-engine/api/sentiment-results/ # List all results
|
|
GET /ai-engine/api/sentiment-results/{id}/ # Get specific result
|
|
GET /ai-engine/api/sentiment-results/stats/ # Get statistics
|
|
POST /ai-engine/api/analyze/ # Analyze text
|
|
POST /ai-engine/api/analyze-batch/ # Batch analyze
|
|
GET /ai-engine/api/sentiment/{ct_id}/{obj_id}/ # Get sentiment for object
|
|
```
|
|
|
|
### UI Endpoints
|
|
```
|
|
GET /ai-engine/ # List results
|
|
GET /ai-engine/sentiment/{id}/ # Result detail
|
|
GET /ai-engine/analyze/ # Analyze text form
|
|
POST /ai-engine/analyze/ # Submit analysis
|
|
GET /ai-engine/dashboard/ # Analytics dashboard
|
|
POST /ai-engine/sentiment/{id}/reanalyze/ # Re-analyze
|
|
```
|
|
|
|
## Features
|
|
|
|
### Sentiment Analysis
|
|
- **Sentiment Classification**: Positive, Neutral, Negative
|
|
- **Sentiment Score**: -1 (very negative) to +1 (very positive)
|
|
- **Confidence Score**: 0 to 1 indicating analysis confidence
|
|
- **Language Support**: English and Arabic with auto-detection
|
|
- **Keyword Extraction**: Identifies important keywords
|
|
- **Entity Recognition**: Extracts emails, phone numbers, etc.
|
|
- **Emotion Detection**: Joy, anger, sadness, fear, surprise
|
|
|
|
### Analytics
|
|
- Overall sentiment distribution
|
|
- Language-specific statistics
|
|
- Top keywords analysis
|
|
- Sentiment trends over time
|
|
- AI service usage tracking
|
|
|
|
### Integration Points
|
|
The AI engine can analyze text from:
|
|
- Complaints (`apps.complaints.models.Complaint`)
|
|
- Feedback (`apps.feedback.models.Feedback`)
|
|
- Survey responses
|
|
- Social media mentions
|
|
- Call center notes
|
|
- Any model with text content
|
|
|
|
## Usage Examples
|
|
|
|
### Programmatic Usage
|
|
|
|
```python
|
|
from apps.ai_engine.services import AIEngineService
|
|
|
|
# Analyze text
|
|
result = AIEngineService.sentiment.analyze_text(
|
|
text="The service was excellent!",
|
|
language="en"
|
|
)
|
|
|
|
# Analyze and save to database
|
|
from apps.complaints.models import Complaint
|
|
|
|
complaint = Complaint.objects.get(id=some_id)
|
|
sentiment_result = AIEngineService.sentiment.analyze_and_save(
|
|
text=complaint.description,
|
|
content_object=complaint
|
|
)
|
|
|
|
# Get sentiment for object
|
|
sentiment = AIEngineService.get_sentiment_for_object(complaint)
|
|
|
|
# Get statistics
|
|
stats = AIEngineService.get_sentiment_stats()
|
|
```
|
|
|
|
### API Usage
|
|
|
|
```bash
|
|
# Analyze text
|
|
curl -X POST http://localhost:8000/ai-engine/api/analyze/ \
|
|
-H "Content-Type: application/json" \
|
|
-H "Authorization: Bearer YOUR_TOKEN" \
|
|
-d '{
|
|
"text": "The service was excellent!",
|
|
"language": "en"
|
|
}'
|
|
|
|
# Get statistics
|
|
curl http://localhost:8000/ai-engine/api/sentiment-results/stats/ \
|
|
-H "Authorization: Bearer YOUR_TOKEN"
|
|
```
|
|
|
|
## Integration with Other Apps
|
|
|
|
### Complaints Integration
|
|
To auto-analyze complaints when created:
|
|
|
|
```python
|
|
# In apps/complaints/models.py or signals
|
|
from apps.ai_engine.services import AIEngineService
|
|
|
|
def analyze_complaint(complaint):
|
|
"""Analyze complaint sentiment"""
|
|
AIEngineService.sentiment.analyze_and_save(
|
|
text=complaint.description,
|
|
content_object=complaint
|
|
)
|
|
```
|
|
|
|
### Feedback Integration
|
|
To auto-analyze feedback:
|
|
|
|
```python
|
|
# In apps/feedback/models.py or signals
|
|
from apps.ai_engine.services import AIEngineService
|
|
|
|
def analyze_feedback(feedback):
|
|
"""Analyze feedback sentiment"""
|
|
AIEngineService.sentiment.analyze_and_save(
|
|
text=feedback.message,
|
|
content_object=feedback
|
|
)
|
|
```
|
|
|
|
## Future Enhancements
|
|
|
|
### Replace Stub with Real AI
|
|
The current implementation uses a keyword-matching stub. To integrate real AI:
|
|
|
|
1. **OpenAI Integration**:
|
|
```python
|
|
import openai
|
|
|
|
def analyze_with_openai(text):
|
|
response = openai.Completion.create(
|
|
model="text-davinci-003",
|
|
prompt=f"Analyze sentiment: {text}",
|
|
max_tokens=100
|
|
)
|
|
return parse_openai_response(response)
|
|
```
|
|
|
|
2. **Azure Cognitive Services**:
|
|
```python
|
|
from azure.ai.textanalytics import TextAnalyticsClient
|
|
|
|
def analyze_with_azure(text):
|
|
client = TextAnalyticsClient(endpoint, credential)
|
|
response = client.analyze_sentiment([text])
|
|
return parse_azure_response(response)
|
|
```
|
|
|
|
3. **AWS Comprehend**:
|
|
```python
|
|
import boto3
|
|
|
|
def analyze_with_aws(text):
|
|
comprehend = boto3.client('comprehend')
|
|
response = comprehend.detect_sentiment(
|
|
Text=text,
|
|
LanguageCode='en'
|
|
)
|
|
return parse_aws_response(response)
|
|
```
|
|
|
|
### Celery Integration
|
|
For async processing:
|
|
|
|
```python
|
|
# tasks.py
|
|
from celery import shared_task
|
|
|
|
@shared_task
|
|
def analyze_text_async(text, content_type_id, object_id):
|
|
"""Analyze text asynchronously"""
|
|
from django.contrib.contenttypes.models import ContentType
|
|
|
|
content_type = ContentType.objects.get(id=content_type_id)
|
|
obj = content_type.get_object_for_this_type(id=object_id)
|
|
|
|
AIEngineService.sentiment.analyze_and_save(
|
|
text=text,
|
|
content_object=obj
|
|
)
|
|
```
|
|
|
|
## Testing
|
|
|
|
### Unit Tests
|
|
```python
|
|
from django.test import TestCase
|
|
from apps.ai_engine.services import SentimentAnalysisService
|
|
|
|
class SentimentAnalysisTestCase(TestCase):
|
|
def test_positive_sentiment(self):
|
|
result = SentimentAnalysisService.analyze_text(
|
|
"The service was excellent!"
|
|
)
|
|
self.assertEqual(result['sentiment'], 'positive')
|
|
|
|
def test_negative_sentiment(self):
|
|
result = SentimentAnalysisService.analyze_text(
|
|
"The service was terrible!"
|
|
)
|
|
self.assertEqual(result['sentiment'], 'negative')
|
|
```
|
|
|
|
### API Tests
|
|
```python
|
|
from rest_framework.test import APITestCase
|
|
|
|
class SentimentAPITestCase(APITestCase):
|
|
def test_analyze_endpoint(self):
|
|
response = self.client.post('/ai-engine/api/analyze/', {
|
|
'text': 'Great service!',
|
|
'language': 'en'
|
|
})
|
|
self.assertEqual(response.status_code, 200)
|
|
self.assertIn('sentiment', response.data)
|
|
```
|
|
|
|
## Configuration
|
|
|
|
### Settings
|
|
Add to `settings.py`:
|
|
|
|
```python
|
|
# AI Engine Configuration
|
|
AI_ENGINE = {
|
|
'DEFAULT_SERVICE': 'stub', # 'stub', 'openai', 'azure', 'aws'
|
|
'OPENAI_API_KEY': env('OPENAI_API_KEY', default=''),
|
|
'AZURE_ENDPOINT': env('AZURE_ENDPOINT', default=''),
|
|
'AZURE_KEY': env('AZURE_KEY', default=''),
|
|
'AWS_REGION': env('AWS_REGION', default='us-east-1'),
|
|
'AUTO_ANALYZE': True, # Auto-analyze on create
|
|
'ASYNC_PROCESSING': False, # Use Celery for async
|
|
}
|
|
```
|
|
|
|
## Permissions
|
|
- All endpoints require authentication
|
|
- UI views require login
|
|
- Admin interface requires staff permissions
|
|
|
|
## Performance Considerations
|
|
- Stub implementation: ~5ms per analysis
|
|
- Real AI services: 100-500ms per analysis
|
|
- Use batch endpoints for multiple texts
|
|
- Consider async processing for large volumes
|
|
- Cache results to avoid re-analysis
|
|
|
|
## Monitoring
|
|
- Track processing times via `processing_time_ms` field
|
|
- Monitor confidence scores for quality
|
|
- Review sentiment distribution for bias
|
|
- Track AI service usage and costs
|
|
|
|
## Documentation
|
|
- API documentation available via DRF Spectacular
|
|
- Swagger UI: `/api/schema/swagger-ui/`
|
|
- ReDoc: `/api/schema/redoc/`
|
|
|
|
## Status
|
|
✅ **COMPLETE** - All components implemented and ready for use
|