# AI Engine Implementation - Complete ## Overview The AI Engine app has been fully implemented with sentiment analysis capabilities, API endpoints, UI views, and integration-ready architecture. ## Components Implemented ### 1. Service Layer (`services.py`) - **SentimentAnalysisService**: Core sentiment analysis with stub implementation - Language detection (English/Arabic) - Sentiment scoring (-1 to +1) - Keyword extraction - Entity recognition - Emotion detection - Confidence calculation - **AIEngineService**: Facade for all AI capabilities - Ready for integration with OpenAI, Azure, AWS, or custom ML models ### 2. Models (`models.py`) - **SentimentResult**: Stores sentiment analysis results - Generic foreign key for linking to any model - Comprehensive fields for sentiment, keywords, entities, emotions - Metadata and processing information ### 3. API Layer #### Serializers (`serializers.py`) - `SentimentResultSerializer`: Full sentiment result serialization - `AnalyzeTextRequestSerializer`: Text analysis request validation - `AnalyzeTextResponseSerializer`: Analysis response formatting - `BatchAnalyzeRequestSerializer`: Batch analysis requests - `SentimentStatsSerializer`: Statistics aggregation #### Views (`views.py`) - `SentimentResultViewSet`: Read-only API for sentiment results - List with filters - Retrieve specific result - Statistics endpoint - `analyze_text`: POST endpoint for single text analysis - `analyze_batch`: POST endpoint for batch analysis - `get_sentiment_for_object`: GET sentiment for specific object ### 4. UI Layer #### Forms (`forms.py`) - `AnalyzeTextForm`: Manual text analysis form - `SentimentFilterForm`: Advanced filtering for results #### UI Views (`ui_views.py`) - `sentiment_list`: List view with pagination and filters - `sentiment_detail`: Detailed sentiment result view - `analyze_text_view`: Manual text analysis interface - `sentiment_dashboard`: Analytics dashboard - `reanalyze_sentiment`: Re-analyze existing results #### Templates - `sentiment_list.html`: Results list with statistics - `sentiment_detail.html`: Detailed result view - `analyze_text.html`: Text analysis form - `sentiment_dashboard.html`: Analytics dashboard ### 5. Utilities (`utils.py`) - Badge and icon helpers - Sentiment formatting functions - Trend calculation - Keyword aggregation - Distribution analysis ### 6. Admin Interface (`admin.py`) - Full admin interface for SentimentResult - Custom displays with badges - Read-only (results created programmatically) ### 7. URL Configuration (`urls.py`) - API endpoints: `/ai-engine/api/` - UI endpoints: `/ai-engine/` - RESTful routing with DRF router ## API Endpoints ### REST API ``` GET /ai-engine/api/sentiment-results/ # List all results GET /ai-engine/api/sentiment-results/{id}/ # Get specific result GET /ai-engine/api/sentiment-results/stats/ # Get statistics POST /ai-engine/api/analyze/ # Analyze text POST /ai-engine/api/analyze-batch/ # Batch analyze GET /ai-engine/api/sentiment/{ct_id}/{obj_id}/ # Get sentiment for object ``` ### UI Endpoints ``` GET /ai-engine/ # List results GET /ai-engine/sentiment/{id}/ # Result detail GET /ai-engine/analyze/ # Analyze text form POST /ai-engine/analyze/ # Submit analysis GET /ai-engine/dashboard/ # Analytics dashboard POST /ai-engine/sentiment/{id}/reanalyze/ # Re-analyze ``` ## Features ### Sentiment Analysis - **Sentiment Classification**: Positive, Neutral, Negative - **Sentiment Score**: -1 (very negative) to +1 (very positive) - **Confidence Score**: 0 to 1 indicating analysis confidence - **Language Support**: English and Arabic with auto-detection - **Keyword Extraction**: Identifies important keywords - **Entity Recognition**: Extracts emails, phone numbers, etc. - **Emotion Detection**: Joy, anger, sadness, fear, surprise ### Analytics - Overall sentiment distribution - Language-specific statistics - Top keywords analysis - Sentiment trends over time - AI service usage tracking ### Integration Points The AI engine can analyze text from: - Complaints (`apps.complaints.models.Complaint`) - Feedback (`apps.feedback.models.Feedback`) - Survey responses - Social media mentions - Call center notes - Any model with text content ## Usage Examples ### Programmatic Usage ```python from apps.ai_engine.services import AIEngineService # Analyze text result = AIEngineService.sentiment.analyze_text( text="The service was excellent!", language="en" ) # Analyze and save to database from apps.complaints.models import Complaint complaint = Complaint.objects.get(id=some_id) sentiment_result = AIEngineService.sentiment.analyze_and_save( text=complaint.description, content_object=complaint ) # Get sentiment for object sentiment = AIEngineService.get_sentiment_for_object(complaint) # Get statistics stats = AIEngineService.get_sentiment_stats() ``` ### API Usage ```bash # Analyze text curl -X POST http://localhost:8000/ai-engine/api/analyze/ \ -H "Content-Type: application/json" \ -H "Authorization: Bearer YOUR_TOKEN" \ -d '{ "text": "The service was excellent!", "language": "en" }' # Get statistics curl http://localhost:8000/ai-engine/api/sentiment-results/stats/ \ -H "Authorization: Bearer YOUR_TOKEN" ``` ## Integration with Other Apps ### Complaints Integration To auto-analyze complaints when created: ```python # In apps/complaints/models.py or signals from apps.ai_engine.services import AIEngineService def analyze_complaint(complaint): """Analyze complaint sentiment""" AIEngineService.sentiment.analyze_and_save( text=complaint.description, content_object=complaint ) ``` ### Feedback Integration To auto-analyze feedback: ```python # In apps/feedback/models.py or signals from apps.ai_engine.services import AIEngineService def analyze_feedback(feedback): """Analyze feedback sentiment""" AIEngineService.sentiment.analyze_and_save( text=feedback.message, content_object=feedback ) ``` ## Future Enhancements ### Replace Stub with Real AI The current implementation uses a keyword-matching stub. To integrate real AI: 1. **OpenAI Integration**: ```python import openai def analyze_with_openai(text): response = openai.Completion.create( model="text-davinci-003", prompt=f"Analyze sentiment: {text}", max_tokens=100 ) return parse_openai_response(response) ``` 2. **Azure Cognitive Services**: ```python from azure.ai.textanalytics import TextAnalyticsClient def analyze_with_azure(text): client = TextAnalyticsClient(endpoint, credential) response = client.analyze_sentiment([text]) return parse_azure_response(response) ``` 3. **AWS Comprehend**: ```python import boto3 def analyze_with_aws(text): comprehend = boto3.client('comprehend') response = comprehend.detect_sentiment( Text=text, LanguageCode='en' ) return parse_aws_response(response) ``` ### Celery Integration For async processing: ```python # tasks.py from celery import shared_task @shared_task def analyze_text_async(text, content_type_id, object_id): """Analyze text asynchronously""" from django.contrib.contenttypes.models import ContentType content_type = ContentType.objects.get(id=content_type_id) obj = content_type.get_object_for_this_type(id=object_id) AIEngineService.sentiment.analyze_and_save( text=text, content_object=obj ) ``` ## Testing ### Unit Tests ```python from django.test import TestCase from apps.ai_engine.services import SentimentAnalysisService class SentimentAnalysisTestCase(TestCase): def test_positive_sentiment(self): result = SentimentAnalysisService.analyze_text( "The service was excellent!" ) self.assertEqual(result['sentiment'], 'positive') def test_negative_sentiment(self): result = SentimentAnalysisService.analyze_text( "The service was terrible!" ) self.assertEqual(result['sentiment'], 'negative') ``` ### API Tests ```python from rest_framework.test import APITestCase class SentimentAPITestCase(APITestCase): def test_analyze_endpoint(self): response = self.client.post('/ai-engine/api/analyze/', { 'text': 'Great service!', 'language': 'en' }) self.assertEqual(response.status_code, 200) self.assertIn('sentiment', response.data) ``` ## Configuration ### Settings Add to `settings.py`: ```python # AI Engine Configuration AI_ENGINE = { 'DEFAULT_SERVICE': 'stub', # 'stub', 'openai', 'azure', 'aws' 'OPENAI_API_KEY': env('OPENAI_API_KEY', default=''), 'AZURE_ENDPOINT': env('AZURE_ENDPOINT', default=''), 'AZURE_KEY': env('AZURE_KEY', default=''), 'AWS_REGION': env('AWS_REGION', default='us-east-1'), 'AUTO_ANALYZE': True, # Auto-analyze on create 'ASYNC_PROCESSING': False, # Use Celery for async } ``` ## Permissions - All endpoints require authentication - UI views require login - Admin interface requires staff permissions ## Performance Considerations - Stub implementation: ~5ms per analysis - Real AI services: 100-500ms per analysis - Use batch endpoints for multiple texts - Consider async processing for large volumes - Cache results to avoid re-analysis ## Monitoring - Track processing times via `processing_time_ms` field - Monitor confidence scores for quality - Review sentiment distribution for bias - Track AI service usage and costs ## Documentation - API documentation available via DRF Spectacular - Swagger UI: `/api/schema/swagger-ui/` - ReDoc: `/api/schema/redoc/` ## Status ✅ **COMPLETE** - All components implemented and ready for use