197 lines
7.4 KiB
Python
197 lines
7.4 KiB
Python
import os
|
||
import json
|
||
import logging
|
||
import requests
|
||
from PyPDF2 import PdfReader
|
||
from recruitment.models import Candidate
|
||
from . linkedin_service import LinkedInService
|
||
from django.shortcuts import get_object_or_404
|
||
from . models import JobPosting
|
||
from django.utils import timezone
|
||
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
OPENROUTER_API_KEY ='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'
|
||
OPENROUTER_MODEL = 'qwen/qwen-2.5-72b-instruct:free'
|
||
|
||
if not OPENROUTER_API_KEY:
|
||
logger.warning("OPENROUTER_API_KEY not set. Resume scoring will be skipped.")
|
||
|
||
def extract_text_from_pdf(file_path):
|
||
print("text extraction")
|
||
text = ""
|
||
try:
|
||
with open(file_path, "rb") as f:
|
||
reader = PdfReader(f)
|
||
for page in reader.pages:
|
||
text += (page.extract_text() or "")
|
||
except Exception as e:
|
||
logger.error(f"PDF extraction failed: {e}")
|
||
raise
|
||
return text.strip()
|
||
|
||
def ai_handler(prompt):
|
||
print("model call")
|
||
response = requests.post(
|
||
url="https://openrouter.ai/api/v1/chat/completions",
|
||
headers={
|
||
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
||
"Content-Type": "application/json",
|
||
},
|
||
data=json.dumps({
|
||
"model": OPENROUTER_MODEL,
|
||
"messages": [{"role": "user", "content": prompt}],
|
||
},
|
||
)
|
||
)
|
||
res = {}
|
||
print(response.status_code)
|
||
if response.status_code == 200:
|
||
res = response.json()
|
||
content = res["choices"][0]['message']['content']
|
||
try:
|
||
|
||
content = content.replace("```json","").replace("```","")
|
||
|
||
res = json.loads(content)
|
||
|
||
except Exception as e:
|
||
print(e)
|
||
|
||
# res = raw_output["choices"][0]["message"]["content"]
|
||
else:
|
||
print("error response")
|
||
return res
|
||
|
||
def handle_reume_parsing_and_scoring(pk):
|
||
logger.info(f"Scoring resume for candidate {pk}")
|
||
try:
|
||
instance = Candidate.objects.get(pk=pk)
|
||
file_path = instance.resume.path
|
||
if not os.path.exists(file_path):
|
||
logger.warning(f"Resume file not found: {file_path}")
|
||
return
|
||
|
||
resume_text = extract_text_from_pdf(file_path)
|
||
job_detail= f"{instance.job.description} {instance.job.qualifications}"
|
||
resume_parser_prompt = f"""
|
||
You are an expert resume parser and summarizer. Given a resume in plain text format, extract and organize the following key-value information into a clean, valid JSON object:
|
||
|
||
full_name: Full name of the candidate
|
||
current_title: Most recent or current job title
|
||
location: City and state (or country if outside the U.S.)
|
||
contact: Phone number and email (as a single string or separate fields)
|
||
linkedin: LinkedIn profile URL (if present)
|
||
github: GitHub or portfolio URL (if present)
|
||
summary: Brief professional profile or summary (1–2 sentences)
|
||
education: List of degrees, each with:
|
||
institution
|
||
degree
|
||
year
|
||
gpa (if provided)
|
||
relevant_courses (as a list, if mentioned)
|
||
skills: Grouped by category if possible (e.g., programming, big data, visualization), otherwise as a flat list of technologies/tools
|
||
experience: List of roles, each with:
|
||
company
|
||
job_title
|
||
location
|
||
start_date and end_date (or "Present" if applicable)
|
||
key_achievements (as a list of concise bullet points)
|
||
projects: List of notable projects (if clearly labeled), each with:
|
||
name
|
||
year
|
||
technologies_used
|
||
brief_description
|
||
Instructions:
|
||
|
||
Be concise but preserve key details.
|
||
Normalize formatting (e.g., “Jun. 2014” → “2014-06”).
|
||
Omit redundant or promotional language.
|
||
If a section is missing, omit the key or set it to null/empty list as appropriate.
|
||
Output only valid JSON—no markdown, no extra text.
|
||
Now, process the following resume text:
|
||
{resume_text}
|
||
"""
|
||
resume_parser_result = ai_handler(resume_parser_prompt)
|
||
resume_scoring_prompt = f"""
|
||
You are an expert technical recruiter. Your task is to score the following candidate for the role of a Senior Data Analyst based on the provided job criteria.
|
||
|
||
**Job Criteria:**
|
||
{job_detail}
|
||
|
||
**Candidate's Extracted Resume Json:**
|
||
\"\"\"
|
||
{resume_parser_result}
|
||
\"\"\"
|
||
|
||
**Your Task:**
|
||
Provide a response in strict JSON format with the following keys:
|
||
1. 'match_score': A score from 0 to 100 representing how well the candidate fits the role.
|
||
2. 'strengths': A brief summary of why the candidate is a strong fit, referencing specific criteria.
|
||
3. 'weaknesses': A brief summary of where the candidate falls short or what criteria are missing.
|
||
4. 'criteria_checklist': An object where you rate the candidate's match for each specific criterion (e.g., {{'Python': 'Met', 'AWS': 'Not Mentioned'}}).
|
||
|
||
|
||
Only output valid JSON. Do not include any other text.
|
||
"""
|
||
|
||
resume_scoring_result = ai_handler(resume_scoring_prompt)
|
||
|
||
instance.parsed_summary = str(resume_parser_result)
|
||
|
||
# Update candidate with scoring results
|
||
instance.match_score = resume_scoring_result.get('match_score')
|
||
instance.strengths = resume_scoring_result.get('strengths', '')
|
||
instance.weaknesses = resume_scoring_result.get('weaknesses', '')
|
||
instance.criteria_checklist = resume_scoring_result.get('criteria_checklist', {})
|
||
|
||
instance.is_resume_parsed = True
|
||
|
||
# Save only scoring-related fields to avoid recursion
|
||
instance.save(update_fields=[
|
||
'match_score', 'strengths', 'weaknesses',
|
||
'criteria_checklist','parsed_summary', 'is_resume_parsed'
|
||
])
|
||
|
||
logger.info(f"Successfully scored resume for candidate {instance.id}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to score resume for candidate {instance.id}: {e}")
|
||
|
||
|
||
def linkedin_post_task(job_slug, access_token):
|
||
# for linked post background tasks
|
||
|
||
job=get_object_or_404(JobPosting,slug=job_slug)
|
||
|
||
try:
|
||
service=LinkedInService()
|
||
service.access_token=access_token
|
||
# long running task
|
||
result=service.create_job_post(job)
|
||
|
||
#update the jobposting object with the final result
|
||
if result['success']:
|
||
job.posted_to_linkedin=True
|
||
job.linkedin_post_id=result['post_id']
|
||
job.linkedin_post_url=result['post_url']
|
||
job.linkedin_post_status='SUCCESSS'
|
||
job.linkedin_posted_at=timezone.now()
|
||
else:
|
||
error_msg=result.get('error',"Unknown API error")
|
||
job.linkedin_post_status = 'FAILED'
|
||
logger.error(f"LinkedIn post failed for job {job_slug}: {error_msg}")
|
||
job.save()
|
||
return result['success']
|
||
except Exception as e:
|
||
logger.error(f"Critical error in LinkedIn task for job {job_slug}: {e}", exc_info=True)
|
||
# Update job status with the critical error
|
||
job.linkedin_post_status = f"CRITICAL_ERROR: {str(e)}"
|
||
job.save()
|
||
return False
|
||
|
||
|
||
|
||
|