Django Documentation
Release 5.2.7.dev20250917080137

Django Software Foundation

September 17, 2025

CONTENTS

1 Django documentation 1
1.1 Firststeps . . . o o o o e 1
1.2 Gettinghelp L o 1
1.3 How the documentationis organized Lo o 1
1.4 Themodel layer. e 2
1.5 Theviewlayer e 2
1.6 Thetemplatelayer e 3
L7 Forms e 3
1.8 Thedevelopment process i e e 3
1.9 Theadmin o e 3
1.10 Security e 4
1.11 Internationalization and localization L o 4
1.12 Performance and optimization 4
1.13 Geographic framework 4
1.14 Common web application tools 4
1.15 Other core functionalities L e 5
1.16 The Django open-source project v it i e e)

2 Getting started 7
2.1 Djangoataglance 7
2.2 Quickinstall guide e 14
2.3 Writing your first Django app, part 1 L 15
2.4 Writing your first Django app, part 2 oL 21
2.5 Writing your first Django app, part 3o L e 35
2.6 Writing your first Django app, part4 e e e 44
2.7 Writing your first Django app, parth L 50
2.8 Writing your first Django app, part 6 Lo 64
2.9 Writing your first Django app, part 7o 66
2.10 Writing your first Django app, part 8 e e e e 78
2.11 Advanced tutorial: How to write reusableappso oL 80

2.12
2.13

What toread next e

Writing your first contribution for Django Lo oo oL

Using Django

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

How toinstall Django o e
Models and databases
Handling HTTP requests o 0 e e e
Working with forms
Templates o
Class-based Views
Migrations o o e e e e e e e
Managing files L e
Testing in Django L e e
User authentication in Django o L
Django’s cache framework
Conditional View Processing o i i e e e e
Composite primary Keys
Cryptographic signing
Sending email
Internationalization and localization o L
LOoggIng o e e e
Pagination L. e
Security in Django
Performance and optimization
Serializing Django objects
Djangosettings e
Signals . . . L
System check framework L L
External packages

Asynchronous supporto e

How-to guides

4.1
4.2
4.3
4.4
4.5

Models, data and databases
Templatesand output e e e
Project configuration and management
Installing, deploying and upgrading
Other guides o o e

Django FAQ

5.1
5.2
5.3
5.4

FAQ: General
FAQ: Installation e e e
FAQ: Using Django
FAQ: Getting Help o e

103
103
107
259
320
391
402
438
455
461
923
991
618
622
626
630
645
704
712
715
720
727
741
747
754
759
760

769
769
802
839
856
880

5.5 FAQ:Databasesandmodels 908
56 FAQ: Theadmin 910
57 FAQ: Contributing code 912
5.8 Troubleshooting e 914
6 API Reference 915
6.1 Applications L 915
6.2 System check framework 924
6.3 Built-in class-based views API 943
6.4 Clickjacking Protection 1008
6.5 contribpackages 1010
6.6 Cross Site Request Forgery protection o .. 1395
6.7 Databases 1399
6.8 django-admin and manage.pyo i e e e e e 1421
6.9 Running management commands from yourcode L oL 1456
6.10 Django Exceptions L e e 1458
6.11 Filehandling 1464
6.12 FOTmMS o e e e e e e e 1474
6.13 Logging e 1574
6.14 Middleware 1583
6.15 Migration Operations. e 1593
6.16 Models 1605
6.17 Paginator 1844
6.18 Request and response objects L 1848
6.19 SchemaEditor e e e 1873
6.20 Settings L e 1876
6.21 Signals L 1937
6.22 Templates L 1949
6.23 TemplateResponse and SimpleTemplateReSpPOnSe v v v v v v v v vt v v i o e 2034
6.24 Unicodedata 2039
6.25 django.urls utility functions. L L 2045
6.26 django.urls functions forusein URLconfs. 2050
6.27 django.conf.urls functions forusein URLconfs 2053
6.28 Django Utils o o e 2054
6.29 Validators 2073
6.30 Built-in Views L 2080
7 Meta-documentation and miscellany 2083
7.1 APIstability 2083
7.2 Design philosophies 2084
7.3 Third-party distributions of Django L 2089
8 Glossary 2091

9 Release notes
9.1 Finalreleases

9.2 Security releases . . .

10 Django internals
10.1 Contributing to Django
10.2 Mailing lists and Forum

10.3 Organization of the Django Project o o i

10.4 Django’s security policies L

10.5 Django’s release process

10.6 Django Deprecation Timeline

10.7 The Django source code

10.8 How to release Django
11 Indices, glossary and tables
Python Module Index

Index

TEPOSItOTY . . . o . o e e e e e e e

2093
2093
2652

2683
2683
2751
2753
2758
2767
2770
2792
2796

2809

2811

2815

CHAPTER

ONE

DJANGO DOCUMENTATION

Everything you need to know about Django.

1.1 First steps

Are you new to Django or to programming? This is the place to start!
e From scratch: Overview | Installation

o Tutorial: Part 1: Requests and responses | Part 2: Models and the admin site | Part 3: Views and
templates | Part 4: Forms and generic views | Part 5: Testing | Part 6: Static files | Part 7: Customizing

the admin site | Part 8: Adding third-party packages

o Advanced Tutorials: How to write reusable apps | Writing your first contribution to Django

1.2 Getting help

Having trouble? We’d like to help!
e Try the FAQ —it’s got answers to many common questions.
¢ Looking for specific information? Try the genindex, modindex or the detailed table of contents.

¢ Not found anything? See FAQ: Getting Help for information on getting support and asking questions

to the community.

¢ Report bugs with Django in our ticket tracker.

1.3 How the documentation is organized

Django has a lot of documentation. A high-level overview of how it’s organized will help you know where to

look for certain things:

o Tutorials take you by the hand through a series of steps to create a web application. Start here if you're

new to Django or web application development. Also look at the “First steps”.

Django Documentation, Release 5.2.7.dev20250917080137

1.4

Topic guides discuss key topics and concepts at a fairly high level and provide useful background in-

formation and explanation.

Reference guides contain technical reference for APIs and other aspects of Django’s machinery. They

describe how it works and how to use it but assume that you have a basic understanding of key concepts.

How-to guides are recipes. They guide you through the steps involved in addressing key problems and

use-cases. They are more advanced than tutorials and assume some knowledge of how Django works.

The model layer

Django provides an abstraction layer (the “models”) for structuring and manipulating the data of your web

application. Learn more about it below:

1.5

Models: Introduction to models | Field types | Indexes | Meta options | Model class

QuerySets: Making queries | QuerySet method reference | Lookup expressions

Model instances: Instance methods | Accessing related objects

Migrations: Introduction to Migrations | Operations reference | SchemaEditor | Writing migrations

Advanced: Managers| Raw SQL | Transactions | Aggregation | Search | Custom fields | Multiple databases

| Custom lookups | Query Expressions | Conditional Expressions | Database Functions

Other: Supported databases | Legacy databases | Providing initial data | Optimize database access

PostgreSQL specific features

The view layer

Django has the concept of “views” to encapsulate the logic responsible for processing a user’s request and for

returning the response. Find all you need to know about views via the links below:

The basics: URLconfs | View functions | Shortcuts | Decorators | Asynchronous Support
Reference: Built-in Views | Request/response objects | TemplateResponse objects
File uploads: Overview | File objects | Storage API | Managing files | Custom storage

Class-based views: Overview | Built-in display views | Built-in editing views | Using mixins | API refer-

ence | Flattened index
Advanced: Generating CSV | Generating PDF

Middleware: Overview | Built-in middleware classes

Chapter 1. Django documentation

Django Documentation, Release 5.2.7.dev20250917080137

1.6 The template layer

The template layer provides a designer-friendly syntax for rendering the information to be presented to the

user. Learn how this syntax can be used by designers and how it can be extended by programmers:
¢ The basics: Overview
o For designers: Language overview | Built-in tags and filters | Humanization

¢ For programmers: Template API | Custom tags and filters | Custom template backend

1.7 Forms

Django provides a rich framework to facilitate the creation of forms and the manipulation of form data.
e The basics: Overview | Form API | Built-in fields | Built-in widgets

e Advanced: Forms for models | Integrating media | Formsets | Customizing validation

1.8 The development process

Learn about the various components and tools to help you in the development and testing of Django appli-

cations:
e Settings: Overview | Full list of settings
¢ Applications: Overview
e Exceptions: Overview
e django-admin and manage.py: Overview | Adding custom commands
¢ Testing: Introduction | Writing and running tests | Included testing tools | Advanced topics

¢ Deployment: Overview | WSGI servers | ASGI servers | Deploying static files | Tracking code errors by

email | Deployment checklist

1.9 The admin

Find all you need to know about the automated admin interface, one of Django’s most popular features:
¢ Admin site
¢ Admin actions

e Admin documentation generator

1.6. The template layer 3

Django Documentation, Release 5.2.7.dev20250917080137

1.10 Security

Security is a topic of paramount importance in the development of web applications and Django provides

multiple protection tools and mechanisms:
e Security overview

¢ Disclosed security issues in Django

Clickjacking protection

Cross Site Request Forgery protection

¢ Cryptographic signing

Security Middleware

1.11 Internationalization and localization

Django offers a robust internationalization and localization framework to assist you in the development of

applications for multiple languages and world regions:
¢ Overview | Internationalization | Localization | Localized web UI formatting and form input

e Time zones

1.12 Performance and optimization

There are a variety of techniques and tools that can help get your code running more efficiently - faster, and

using fewer system resources.

e Performance and optimization overview

1.13 Geographic framework

GeoDjango intends to be a world-class geographic web framework. Its goal is to make it as easy as possible

to build GIS web applications and harness the power of spatially enabled data.

1.14 Common web application tools

Django offers multiple tools commonly needed in the development of web applications:

o Authentication: Overview | Using the authentication system | Password management | Customizing

authentication | API Reference
e Caching

e Logging

4 Chapter 1. Django documentation

Django Documentation, Release 5.2.7.dev20250917080137

¢ Sending emails

¢ Syndication feeds (RSS/Atom)
e Pagination

¢ Messages framework

o Serialization

e Sessions

e Sitemaps

e Static files management

e Data validation

1.15 Other core functionalities

Learn about some other core functionalities of the Django framework:
¢ Conditional content processing
e Content types and generic relations
¢ Flatpages
¢ Redirects
e Signals
¢ System check framework
¢ The sites framework

e Unicode in Django

1.16 The Django open-source project

Learn about the development process for the Django project itself and about how you can contribute:

¢ Community: Contributing to Django | The release process | Team organization | The Django source code

repository | Security policies | Mailing lists and Forum
¢ Design philosophies: Overview
¢ Documentation: About this documentation
¢ Third-party distributions: Overview

e Django over time: API stability | Release notes and upgrading instructions | Deprecation Timeline

1.15. Other core functionalities 5

Django Documentation, Release 5.2.7.dev20250917080137

6 Chapter 1. Django documentation

CHAPTER

TWO

GETTING STARTED

New to Django? Or to web development in general? Well, you came to the right place: read this material to

quickly get up and running.

2.1 Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was designed to make common
web development tasks fast and easy. Here’s an informal overview of how to write a database-driven web

app with Django.

The goal of this document is to give you enough technical specifics to understand how Django works, but this
isn’t intended to be a tutorial or reference — but we’ve got both! When you're ready to start a project, you

can start with the tutorial or dive right into more detailed documentation.

2.1.1 Design your model

Although you can use Django without a database, it comes with an object-relational mapper in which you

describe your database layout in Python code.

The data-model syntax offers many rich ways of representing your models — so far, it’s been solving many

years’ worth of database-schema problems. Here’s a quick example:

Listing 1: news/models.py

from django.db import models

class Reporter(models.Model) :
full_name = models.CharField(max_length=70)

def __str__()8

return .full _name

(continues on next page)

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

class Article(models.Model) :
pub_date = models.DateField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

def __str__(K

return .headline

2.1.2 Install it

Next, run the Django command-line utilities to create the database tables automatically:

$ python manage.py makemigrations

$ python manage.py migrate

The makemigrations command looks at all your available models and creates migrations for whichever ta-
bles don’t already exist. migraterunsthe migrations and creates tablesin your database, as well as optionally

providing much richer schema control.

2.1.3 Enjoy the free API

With that, you’ve got a free, and rich, Python API to access your data. The API is created on the fly, no code

generation necessary:

Import the models we created from our "news" app

>>> from news.models import Article, Reporter

No reporters are in the system yet.
>>> Reporter.objects.all()
<QuerySet []>

Create a new Reporter.

>>> r = Reporter(full_name="John Smith'")

Save the object into the database. You have to call save() explicitly.

>>> r.save()

Now it has an ID.

>>> r.id

(continues on next page)

8 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

Now the new reporter is in the database.
>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

Fields are represented as attributes on the Python object.
>>> r.full name
'John Smith'

Django provides a rich database lookup API.

>>> Reporter.objects.get(id=1)

<Reporter: John Smith>

>>> Reporter.objects.get(full_name__startswith="John")
<Reporter: John Smith>

>>> Reporter.objects.get(full_name__contains="mith")
<Reporter: John Smith>

>>> Reporter.objects.get (id=2)

Traceback (most recent call last):

DoesNotExist: Reporter matching query does not exist.

Create an article.
>>> from datetime import date
>>> a = Article(
pub_date=date.today(), headline="Django is cool", content='"Yeah.', reporter=r
)

>>> a.save()

Now the article is in the database.
>>> Article.objects.all()

<QuerySet [<Article: Django is cool>]>

Article objects get API access to related Reporter objects.
>>> r = a.reporter
>>> r.full name

'John Smith'

And vice versa: Reporter objects get API access to Article objects.

>>> r.article_set.all()

(continues on next page)

2.1. Django at a glance 9

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

<QuerySet [<Article: Django is cool>]>

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.

This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter(reporter__full_name__startswith="John")

<QuerySet [<Article: Django is cool>]>

Change an object by altering its attributes and calling save().
>>> r.full_name = "Billy Goat"

>>> r.save()

Delete an object with delete().
>>> r.delete()

2.1.4 A dynamic admin interface: it’s not just scaffolding — it’s the whole house

Once your models are defined, Django can automatically create a professional, production ready administra-
tive interface — a website that lets authenticated users add, change and delete objects. The only step required

is to register your model in the admin site:

Listing 2: news/models. py

from django.db import models

class Article(models.Model) :
pub_date = models.DateField()
headline = models.CharField(max_length=200)
content = models.TextField()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

10 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Listing 3: news/admin.py

from django.contrib import admin

from . import models

admin.site.register (models.Article)

The philosophy here is that your site is edited by a staff, or a client, or maybe just you — and you don’t want

to have to deal with creating backend interfaces only to manage content.

One typical workflow in creating Django apps is to create models and get the admin sites up and running as
fast as possible, so your staff (or clients) can start populating data. Then, develop the way data is presented
to the public.

2.1.5 Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality web application. Django encourages

beautiful URL design and doesn’t put any cruft in URLs, like . php or . asp.

To design URLs for an app, you create a Python module called a URLconf. A table of contents for your
app, it contains a mapping between URL patterns and Python callback functions. URLconfs also serve to

decouple URLs from Python code.

Here’s what a URLconf might look like for the Reporter/Article example above:

Listing 4: news/urls.py

from django.urls import path

from . import views

urlpatterns = [
path("articles/<int:year>/", views.year_archive),
path("articles/<int:year>/<int:month>/", views.month_archive),

path("articles/<int:year>/<int:month>/<int:pk>/", views.article_detail),

The code above maps URL paths to Python callback functions (“views”). The path strings use parameter
tags to “capture” values from the URLs. When a user requests a page, Django runs through each path, in
order, and stops at the first one that matches the requested URL. (If none of them matches, Django calls a
special-case 404 view.) This is blazingly fast, because the paths are compiled into regular expressions at load

time.

Once one of the URL patterns matches, Django calls the given view, which is a Python function. Each view

2.1. Django at a glance 11

Django Documentation, Release 5.2.7.dev20250917080137

gets passed a request object — which contains request metadata — and the values captured in the pattern.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django would call the function news.
views.article_detail(request, year=2005, month=5, pk=39323).

2.1.6 Write your views

Each view is responsible for doing one of two things: Returning an HttpResponse object containing the

content for the requested page, or raising an exception such as Http404. The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template and renders the template with

the retrieved data. Here’s an example view for year_archive from above:

Listing 5: news/views.py

from django.shortcuts import render

from .models import Article

def year_archive(request, year):
a_list = Article.objects.filter(pub_date__year=year)
context = {"year": year, "article list": a_list}

return render(request, '"news/year archive.html", context)

This example uses Django’s template system, which has several powerful features but strives to stay simple

enough for non-programmers to use.

2.1.7 Design your templates
The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among templates. In your
Django settings, you specify a list of directories to check for templates with DIRS. If a template doesn’t exist

in the first directory, it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that might look like:

Listing 6: news/templates/news/year_archive.html

extends "base.html"

block title /jArticles for year endblock

block content

<h1>Articles for year }}</hi1>
(continues on next page)

12 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

for article in article_list

<p>{{ article.headline }}</p>

<p>By article.reporter.full_name }}</p>
<p>Published article.pub_dateldate:"F j, Y" </p>
endfor

endblock

Variables are surrounded by double-curly braces. {{ article.headline }} means “Output the value of the
article’s headline attribute.” But dots aren’t used only for attribute lookup. They also can do dictionary-key

lookup, index lookup and function calls.

Note {{ article.pub_datel|date:"F j, Y" }} usesa Unix-style “pipe” (the “/” character). This is called a
template filter, and it’s a way to filter the value of a variable. In this case, the date filter formats a Python

datetime object in the given format (as found in PHP’s date function).

You can chain together as many filters as you'd like. You can write custom template filters. You can write

custom template tags, which run custom Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the {), extends "base.html" %}
does. It means “First load the template called ‘base’, which has defined a bunch of blocks, and fill the blocks
with the following blocks.” In short, that lets you dramatically cut down on redundancy in templates: each

template has to define only what’s unique to that template.

Here’s what the “base.html” template, including the use of static files, might look like:

Listing 7: templates/base.html

load static
<html lang="en'">
<head>
<title>{/ block title endblock 7 }</title>
</head>
<body>

block content endblock
</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo), and provides “holes” for child
templates to fill. This means that a site redesign can be done by changing a single file — the base template.

It also lets you create multiple versions of a site, with different base templates, while reusing child tem-

plates. Django’s creators have used this technique to create strikingly different mobile versions of sites by

2.1. Django at a glance 13

Django Documentation, Release 5.2.7.dev20250917080137

only creating a new base template.

Note that you don’t have to use Django’s template system if you prefer another system. While Django’s
template system is particularly well-integrated with Django’s model layer, nothing forces you to use it. For
that matter, you don’t have to use Django’s database API, either. You can use another database abstraction
layer, you can read XML files, you can read files off disk, or anything you want. Each piece of Django —

models, views, templates — is decoupled from the next.

2.1.8 This is just the surface
This has been only a quick overview of Django’s functionality. Some more useful features:
¢ A caching framework that integrates with memcached or other backends.
¢ A syndication framework that lets you create RSS and Atom feeds by writing a small Python class.
¢ More attractive automatically-generated admin features — this overview barely scratched the surface.

The next steps are for you to download Django, read the tutorial and join the community. Thanks for your

interest!

2.2 Quick install guide

Before you can use Django, you’ll need to get it installed. We have a complete installation guide that covers
all the possibilities; this guide will guide you to a minimal installation that’ll work while you walk through

the introduction.

2.2.1 Install Python

Being a Python web framework, Django requires Python. See What Python version can I use with Django?
for details. Python includes a lightweight database called SQLite so you won’t need to set up a database just

yet.

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s pack-

age manager.

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 3.x.y
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.

>>>

14 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

2.2.2 Set up a database

This step is only necessary if you’d like to work with a “large” database engine like PostgreSQL, MariaDB,

MySQL, or Oracle. To install such a database, consult the database installation information.

2.2.3 Install Django
You’ve got three options to install Django:
e Install an official release. This is the best approach for most users.
» Install a version of Django provided by your operating system distribution.

o Install the latest development version. This option is for enthusiasts who want the latest-and-greatest
features and aren’t afraid of running brand new code. You might encounter new bugs in the devel-
opment version, but reporting them helps the development of Django. Also, releases of third-party
packages are less likely to be compatible with the development version than with the latest stable re-

lease.

© Always refer to the documentation that corresponds to the version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the documentation marked new in de-
velopment version. That phrase flags features that are only available in development versions of Django,

and they likely won’t work with an official release.

2.2.4 Verifying

To verify that Django can be seen by Python, type python from your shell. Then at the Python prompt, try

to import Django:

>>> import django
>>> print(django.get_version())
5.2

You may have another version of Django installed.

2.2.5 That's it!

That’s it — you can now move onto the tutorial.

2.3 Writing your first Django app, part 1

Let’s learn by example.
Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

1t consist of two parts:

2.3. Writing your first Django app, part 1 15

Django Documentation, Release 5.2.7.dev20250917080137

¢ A public site that lets people view polls and vote in them.
¢ An admin site that lets you add, change, and delete polls.

We'll assume you have Django installed already. You can tell Django is installed and which version by

running the following command in a shell prompt (indicated by the $ prefix):

$ python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No

module named django”.

This tutorial is written for Django 5.2, which supports Python 3.10 and later. If the Django version doesn’t
match, you can refer to the tutorial for your version of Django by using the version switcher at the bottom
right corner of this page, or update Django to the newest version. If you’re using an older version of Python,

check What Python version can I use with Django? to find a compatible version of Django.

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.3.1 Creating a project

If this is your first time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to
auto-generate some code that establishes a Django project —a collection of settings for an instance of Django,

including database configuration, Django-specific options and application-specific settings.

From the command line, cd into a directory where you’d like to store your code and create a new directory
named djangotutorial. (This directory name doesn’t matter to Django; you can rename it to anything you
like.)

‘$ mkdir djangotutorial

Then, run the following command to bootstrap a new Django project:

‘$ django-admin startproject mysite djangotutorial

This will create a project called mysite inside the djangotutorial directory. If it didn’t work, see Problems

running django-admin.

O Note

You’ll need to avoid naming projects after built-in Python or Django components. In particular, this

means you should avoid using names like django (which will conflict with Django itself) or test (which

16 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

conflicts with a built-in Python package).

Let’s look at what startproject created:

djangotutorial/

manage . py

mysite/
__init__.py
settings.py
urls.py
asgi.py
wsgi.py

These files are:

¢ manage.py: A command-line utility that lets you interact with this Django project in various ways.

You can read all the details about manage . py in django-admin and manage.py.

e mysite/: A directory thatis the actual Python package for your project. Its name is the Python package

name you’ll need to use to import anything inside it (e.g. mysite.urls).

e mysite/__init__.py: Anempty file that tells Python that this directory should be considered a Python

package. If you're a Python beginner, read more about packages in the official Python docs.

e mysite/settings.py: Settings/configuration for this Django project. Django settings will tell you all

about how settings work.

e mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-

powered site. You can read more about URLs in URL dispatcher.

e mysite/asgi.py: An entry-point for ASGI-compatible web servers to serve your project. See How to

deploy with ASGI for more details.

e mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See How to

deploy with WSGI for more details.

2.3.2 The development server

Let’s verify your Django project works. Change into the djangotutorial directory, if you haven’t already,

and run the following commands:

$ python manage.py runserver

You'll see the following output on the command line:

Performing system checks...

2.3. Writing your first Django app, part 1 17

Django Documentation, Release 5.2.7.dev20250917080137

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.

Run 'python manage.py migrate' to apply them.

September 17, 2025 - 15:50:53

Django version 5.2, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

WARNING: This is a development server. Do not use it in a production setting. Use a
—production WSGI or ASGI server instead.
For more information on production servers see: https://docs.djangoproject.com/en/5.2/

—howto/deployment/

O Note

Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

Now that the server’s running, visit http://127.0.0.1:8000/ with your web browser. You’ll see a “Congratula-

tions!” page, with a rocket taking off. It worked!

You've started the Django development server, a lightweight web server written purely in Python. We've
included this with Django so you can develop things rapidly, without having to deal with configuring a pro-

duction server — such as Apache — until you're ready for production.

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s

intended only for use while developing. (We're in the business of making web frameworks, not web servers.)

(To serve the site on a different port, see the runserver reference.)

© Automatic reloading of runserver

The development server automatically reloads Python code for each request as needed. You don’t need
to restart the server for code changes to take effect. However, some actions like adding files don’t trigger

a restart, so yowll have to restart the server in these cases.

2.3.3 Creating the Polls app
Now that your environment — a “project” — is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django
comes with a utility that automatically generates the basic directory structure of an app, so you can focus

on writing code rather than creating directories.

18 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

© Projects vs. apps

What’s the difference between a project and an app? An app is a web application that does something —
e.g., a blog system, a database of public records or a small poll app. A project is a collection of configuration

and apps for a particular website. A project can contain multiple apps. An app can be in multiple projects.

Your apps can live anywhere in your Python path. In this tutorial, we’ll create our poll app inside the

djangotutorial folder.

To create your app, make sure you're in the same directory as manage . py and type this command:

$ python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py

models.py
tests.py

views.py

This directory structure will house the poll application.

2.3.4 Write your first view

Let’s write the first view. Open the file polls/views.py and put the following Python code in it:

Listing 8: polls/views.py

from django.http import HttpResponse

def index(request):

return HttpResponse("Hello, world. You're at the polls index.")

This is the most basic view possible in Django. To access it in a browser, we need to map it to a URL - and for
this we need to define a URL configuration, or “URLconf” for short. These URL configurations are defined
inside each Django app, and they are Python files named urls.py.

To define a URLconf for the polls app, create a file polls/urls.py with the following content:

2.3. Writing your first Django app, part 1 19

Django Documentation, Release 5.2.7.dev20250917080137

Listing 9: polls/urls.py

from django.urls import path

from . import views

urlpatterns = [

path("", views.index, name="index"),

Your app directory should now look like:

polls/
__init__.py
admin.py
apps.py
migrations/

__init__.py

models.py
tests.py
urls.py

views.py

The next step is to configure the root URLconf in the mysite project to include the URLconf defined in polls.
urls. To do this, add an import for django.urls.include in mysite/urls.py and insert an include() in

the urlpatterns list, so you have:

Listing 10: mysite/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [
path("polls/", include("polls.urls")),
path("admin/", admin.site.urls),

The path () function expects at least two arguments: route and view. The include () function allows ref-
erencing other URLconfs. Whenever Django encounters include (), it chops off whatever part of the URL

matched up to that point and sends the remaining string to the included URLconf for further processing.

The idea behind inciude () is to make it easy to plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under “/fun polls/”, or under “/content/polls/”, or

20 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

any other path root, and the app will still work.

©® When to use include()

You should always use include () when you include other URL patterns. The only exception is admin.
site.urls, which is a pre-built URLconf provided by Django for the default admin site.

You have now wired an index view into the URLconf. Verify it’s working with the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You're at the

polls index.”, which you defined in the index view.

O Page not found?

If you get an error page here, check that you're going to http://localhost:8000/polls/ and not http:
/localhost:8000/.

When you're comfortable with the basic request and response flow, read part 2 of this tutorial to start working
with the database.
2.4 Writing your first Django app, part 2

This tutorial begins where Tutorial 1 left off. We’ll set up the database, create your first model, and get a

quick introduction to Django’s automatically-generated admin site.

©® Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.4.1 Database setup
Now, open up mysite/settings.py. It’s a normal Python module with module-level variables representing
Django settings.

By default, the DATABASES configuration uses SQLite. If you’re new to databases, or you're just interested in
trying Django, this is the easiest choice. SQLite is included in Python, so you won’t need to install anything
else to support your database. When starting your first real project, however, you may want to use a more

scalable database like PostgreSQL, to avoid database-switching headaches down the road.

If you wish to use another database, see details to customize and get your database running.

2.4. Writing your first Django app, part 2 21

Django Documentation, Release 5.2.7.dev20250917080137

While you're editing mysite/settings.py, set TIME_ZONE to your time zone.

Also, note the TNSTALLED_APPS setting at the top of the file. That holds the names of all Django applications
that are activated in this Django instance. Apps can be used in multiple projects, and you can package and

distribute them for use by others in their projects.
By default, INSTALLED_APPS contains the following apps, all of which come with Django:
e django.contrib.admin — The admin site. Yowll use it shortly.
e django.contrib.auth — An authentication system.
e django.contrib.contenttypes — A framework for content types.
e django.contrib.sessions — A session framework.
e django.contrib.messages — A messaging framework.
e django.contrib.staticfiles— A framework for managing static files.
These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though, so we need to create the tables in

the database before we can use them. To do that, run the following command:

$ python manage.py migrate

The migrate command looks at the TNSTALLED_ APPS setting and creates any necessary database tables ac-
cording to the database settings in your mysite/settings.py file and the database migrations shipped with
the app (we’ll cover those later). You’ll see a message for each migration it applies. If you're interested, run
the command-line client for your database and type \dt (PostgreSQL), SHOW TABLES; (MariaDB, MySQL),
.tables (SQLite), or SELECT TABLE_NAME FROM USER_TABLES; (Oracle) to display the tables Django created.

©® For the minimalists

Like we said above, the default applications are included for the common case, but not everybody needs
them. If you don’t need any or all of them, feel free to comment-out or delete the appropriate line(s) from
INSTALLED_APPS before running migrate. The migrate command will only run migrations for apps in
INSTALLED APPS.

2.4.2 Creating models

Now we’ll define your models — essentially, your database layout, with additional metadata.

© Philosophy

A model is the single, definitive source of information about your data. It contains the essential fields and

behaviors of the data you’re storing. Django follows the DRY Principle. The goal is to define your data

22 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

model in one place and automatically derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations are entirely derived
from your models file, and are essentially a history that Django can roll through to update your database

schema to match your current models.

In our poll app, we’ll create two models: Question and Choice. A Question has a question and a publication
date. A Choice has two fields: the text of the choice and a vote tally. Each Choice is associated with a

Question.

These concepts are represented by Python classes. Edit the polls/models. py file so it looks like this:

Listing 11: polls/models.py

from django.db import models

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField("date published")

class Choice(models.Model):
question = models.ForeignKey(Question, on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

Here, each model is represented by a class that subclasses django.db.models.Model. Each model has a

number of class variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field class — e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what type of data each field holds.

The name of each Field instance (e.g. question_text or pub_date) is the field’s name, in machine-friendly

format. You’'ll use this value in your Python code, and your database will use it as the column name.

You can use an optional first positional argument to a Field to designate a human-readable name. That’s
used in a couple of introspective parts of Django, and it doubles as documentation. If this field isn’t provided,
Django will use the machine-readable name. In this example, we’'ve only defined a human-readable name
for Question.pub_date. For all other fields in this model, the field’s machine-readable name will suffice as

its human-readable name.

Some Field classes have required arguments. CharField, for example, requires that you give it a

maz_length. That’s used not only in the database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in this case, we’ve set the default value of votes to 0.

2.4. Writing your first Django app, part 2 23

Django Documentation, Release 5.2.7.dev20250917080137

Finally, note a relationship is defined, using Foreignkey. That tells Django each Choice is related to a single
Question. Django supports all the common database relationships: many-to-one, many-to-many, and one-

to-one.

2.4.3 Activating models

That small bit of model code gives Django a lot of information. With it, Django is able to:
o Create a database schema (CREATE TABLE statements) for this app.
¢ Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the polls app is installed.

© Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and you can distribute apps,

because they don’t have to be tied to a given Django installation.

To include the app in our project, we need to add a reference to its configuration class in the TNSTALLED_ APPS
setting. The PollsConfigclassisin the polls/apps.py file,soits dotted pathis 'polls.apps.PollsConfig'.
Edit the mysite/settings.py file and add that dotted path to the INSTALLED_ APPS setting. It’ll look like
this:

Listing 12: mysite/settings.py

INSTALLED_APPS = [
"polls.apps.PollsConfig",
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",

"django.contrib.staticfiles",

Now Django knows to include the polls app. Let’s run another command:

$ python manage.py makemigrations polls

You should see something similar to the following;:

Migrations for 'polls':

polls/migrations/0001_initial.py

(continues on next page)

24 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
+ Create model Question

+ Create model Choice

By running makemigrations, you're telling Django that you’ve made some changes to your models (in this

case, you've made new ones) and that you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your database schema) - they’re files
on disk. You can read the migration for your new model if you like; it’s the file polls/migrations/
0001_initial.py. Don’t worry, you're not expected to read them every time Django makes one, but they’re

designed to be human-editable in case you want to manually tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database schema automatically -
that’s called migrate, and we’ll come to it in a moment - but first, let’s see what SQL that migration would

run. The sqglmigrate command takes migration names and returns their SQL:

$ python manage.py sqlmigrate polls 0001

You should see something similar to the following (we’ve reformatted it for readability):

BEGIN;

CREATE TABLE "polls_question" (
"id" NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
"question_text" (200) NOT NULL,
"pub_date" timestamp with time zone NOT NULL

);

CREATE TABLE "polls_ choice" (

"id" NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
"choice_text" (200) NOT NULL,

"votes" NOT NULL,

"question_id" NOT NULL

);
ALTER TABLE "polls_choice"
ADD CONSTRAINT "polls_choice_question_id_c5b4b260_fk_polls_question_id"
FOREIGN KEY ("question_id")
REFERENCES "polls_question" ("id")
DEFERRABLE INITIALLY DEFERRED;

(continues on next page)

2.4. Writing your first Django app, part 2 25

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

CREATE INDEX "polls_choice_question_id_c5b4b260" ON "polls_choice" ("question_id");

COMMIT;

Note the following:

¢ The exact output will vary depending on the database you are using. The example above is generated
for PostgreSQL.

e Table names are automatically generated by combining the name of the app (polls) and the lowercase

name of the model — question and choice. (You can override this behavior.)
¢ Primary keys (IDs) are added automatically. (You can override this, too.)

» By convention, Django appends "_id" to the foreign key field name. (Yes, you can override this, as

well.)

¢ The foreign key relationship is made explicit by a FOREIGN KEY constraint. Don’t worry about the
DEFERRABLE parts; it’s telling PostgreSQL to not enforce the foreign key until the end of the transaction.

o It’s tailored to the database you're using, so database-specific field types such as auto_increment
(MySQL), bigint PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY (PostgreSQL), or integer
primary key autoincrement (SQLite) are handled for you automatically. Same goes for the quoting

of field names - e.g., using double quotes or single quotes.

¢ The sqlmigrate command doesn’t actually run the migration on your database - instead, it prints it to
the screen so that you can see what SQL Django thinks is required. It’s useful for checking what Django

is going to do or if you have database administrators who require SQL scripts for changes.

If you're interested, you can also run python manage.py check;thischecks for any problems in your project

without making migrations or touching the database.

Now, run migrate again to create those model tables in your database:

$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, auth, contenttypes, polls, sessions
Running migrations:

Rendering model states... DONE

Applying polls.0001_initial... OK

The migrate command takes all the migrations that haven’t been applied (Django tracks which ones are ap-
plied using a special table in your database called django_migrations) and runs them against your database

- essentially, synchronizing the changes you made to your models with the schema in the database.

Migrations are very powerful and let you change your models over time, as you develop your project, without

the need to delete your database or tables and make new ones - it specializes in upgrading your database live,

26 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

without losing data. We’ll cover them in more depth in a later part of the tutorial, but for now, remember

the three-step guide to making model changes:
e Change your models (in models. py).
¢ Run python manage.py makemigrations to create migrations for those changes
¢ Run python manage.py migrate toapply those changes to the database.

The reason that there are separate commands to make and apply migrations is because you’ll commit mi-
grations to your version control system and ship them with your app; they not only make your development

easier, they’re also usable by other developers and in production.

Read the django-admin documentation for full information on what the manage . py utility can do.

2.4.4 Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free API Django gives you. To

invoke the Python shell, use this command:

$ python manage.py shell

We're using this instead of simply typing “python”, because manage . py sets the DJANGO_SETTINGS MODULE
environment variable, which gives Django the Python import path to your mysite/settings.py file. By
default, the shell command automatically imports the models from your INSTALLED_APPS.

Once you're in the shell, explore the database API:

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

Create a new Question.

Support for time zones is enabled in the default settings file, so

Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.

>>> from django.utils import timezone

>>> q = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.

>>> q.save()
Now it has an ID.
>>> g.id

1

(continues on next page)

2.4. Writing your first Django app, part 2 27

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
Access model field values via Python attributes.
>>> q.question_text
"What's new?"
>>> q.pub_date
datetime.datetime (2012, 2, 26, 13, 0, 0, 775217, tzinfo=datetime.timezone.utc)

Change values by changing the attributes, then calling save().
>>> q.question_text = "What's up?"

>>> q.save()

objects.all() displays all the questions in the database.
>>> Question.objects.all()

<QuerySet [<Question: Question object (1)>]>

Wait a minute. <Question: Question object (1)> isn’t a helpful representation of this object. Let’s fix
that by editing the Question model (in the polls/models.py file) and adding a __st7__ () method to both

Question and Choice:

Listing 13: polls/models.py

from django.db import models

class Question(models.Model):
...
def __str__(self):

return self.question_text

class Choice(models.Model):
...
def __str__(self):

return self.choice_text

It’s important to add __str__ () methods to your models, not only for your own convenience when deal-
ing with the interactive prompt, but also because objects’ representations are used throughout Django’s

automatically-generated admin.

Let’s also add a custom method to this model:

28 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Listing 14: polls/models.py

import datetime

from django.db import models

from django.utils import timezone

class Question(models.Model):
...
def was_published_recently(self):

return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

Note the addition of import datetime and from django.utils import timezone, to reference Python’s
standard datetime module and Django’s time-zone-related utilities in django.utils. timezone, respec-
tively. If you aren’t familiar with time zone handling in Python, you can learn more in the time zone support

docs.

Save these changes and start a new Python interactive shell by running python manage.py shell again:

Make sure our __str_ () addition worked.
>>> Question.objects.all()

<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.

>>> Question.objects.filter(id=1)

<QuerySet [<Question: What's up?>]>

>>> Question.objects.filter(question_text__startswith="What")

<QuerySet [<Question: What's up?>]>

Get the question that was published this year.

>>> from django.utils import timezone

>>> current_year = timezone.now() .year

>>> Question.objects.get(pub_date__year=current_year)

<Question: What's up?>
Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get (id=2)

Traceback (most recent call last):

(continues on next page)

2.4. Writing your first Django app, part 2 29

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.

The following is identical to Question.objects.get(id=1).

>>> Question.objects.get (pk=1)

<Question: What's up?>

Make sure our custom method worked.
>>> g = Question.objects.get (pk=1)
>>> q.was_published_recently()

True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set

of available choices and returns the new Choice object. Django creates

a set (defined as "choice_set") to hold the "other side" of a ForeignKey
relation (e.g. a question's choice) which can be accessed via the API.

>>> q = Question.objects.get (pk=1)

Display any choices from the related object set -- none so far.
>>> q.choice_set.all()
<QuerySet []>

Create three choices.

>>> q.choice_set.create(choice_text="Not much", votes=0)
<Choice: Not much>

>>> q.choice_set.create(choice_text="The sky'", votes=0)
<Choice: The sky>

>>> ¢ = q.choice_set.create(choice_text="Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question

<Question: What's up?>

And vice versa: Question objects get access to Choice objects.

>>> q.choice_set.all()

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> qg.choice_set.count ()

3

(continues on next page)

30 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

The API automatically follows relationships as far as you need.
Use double underscores to separate relationships.

This works as many levels deep as you want; there's no limit.

Find all Choices for any question whose pub_date is in this year
(reusing the 'current_year' variable we created above) .

>>> Choice.objects.filter(question__pub_date__year=current_year)

<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.

>>> ¢ = q.choice_set.filter(choice_text__startswith="Just hacking")

>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double
underscores to perform field lookups via the API, see Field lookups. For full details on the database API, see

our Database API reference.

2.4.5 Introducing the Django Admin

© Philosophy

Generating admin sites for your staff or clients to add, change, and delete content is tedious work that
doesn’t require much creativity. For that reason, Django entirely automates creation of admin interfaces

for models.

Django was written in a newsroom environment, with a very clear separation between “content publish-
ers” and the “public” site. Site managers use the system to add news stories, events, sports scores, etc.,
and that content is displayed on the public site. Django solves the problem of creating a unified interface

for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the following command:

‘$ python manage.py createsuperuser

Enter your desired username and press enter.

‘ Username: admin

You will then be prompted for your desired email address:

2.4. Writing your first Django app, part 2 31

Django Documentation, Release 5.2.7.dev20250917080137

{Email address: admin@example.com 1

The final step is to enter your password. You will be asked to enter your password twice, the second time as

a confirmation of the first.

Password: s ioksksokkskkk
Password (again): skkkkkxkk

Superuser created successfully.

Start the development server
The Django admin site is activated by default. Let’s start the development server and explore it.

If the server is not running start it like so:

$ python manage.py runserver

Now, open a web browser and go to “/admin/” on your local domain — e.g., http://127.0.0.1:8000/admin/. You

should see the admin’s login screen:

Django administration @

Username:

Password:

Since translation is turned on by default, if you set LANGUAGE_CODE, the login screen will be displayed in the

given language (if Django has appropriate translations).

32 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Enter the admin site

Now, try logging in with the superuser account you created in the previous step. You should see the Django

admin index page:

Django administration WELCOME, ADMIN. VIEW SITE / CHANG

Site administration

AUTHENTICATION AND AUTHORIZATION

Recent actions
Groups + Add ¢ Change

s + add # Change My actions

Naone available

You should see a few types of editable content: groups and users. They are provided by django.contrib.
auth, the authentication framework shipped by Django.

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Only one more thing to do: we need to tell the admin that Question objects have an admin interface. To do
this, open the polls/admin.py file, and edit it to look like this:

Listing 15: polls/admin.py

from django.contrib import admin

from .models import Question

admin.site.register(Question)

Explore the free admin functionality

Now that we’ve registered Question, Django knows that it should be displayed on the admin index page:

Site administration

AUTHENTICATION AND AUTHORIZATION

Recent actions

Groups + add ¢ Change

Users + Add # Change My actions
Mone available

POLLS

Questions + add ¢ Change

2.4. Writing your first Django app, part 2 33

Django Documentation, Release 5.2.7.dev20250917080137

Click “Questions”. Now you're at the “change list” page for questions. This page displays all the questions

in the database and lets you choose one to change it. There’s the “What’s up?” question we created earlier:

Select question to change

Action; |- v || Go | Dof1 selected

O ouestion

O what'sup?

1 guestion

Click the “What’s up?” question to edit it:

Change question

HISTORY

What's up?

Question text: What's up?

Date published: .
P Date: 2024-08-02 Today |

Time: | 09:56:38 Now | (D)

Save and add another Save and continue editing Delete

Things to note here:
e The form is automatically generated from the Question model.

o The different model field types (DateTimeField, CharField) correspond to the appropriate HTML in-
put widget. Each type of field knows how to display itself in the Django admin.

e FEach DateTimeField gets free JavaScript shortcuts. Dates get a “Today” shortcut and calendar popup,
and times get a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:

¢ Save — Saves changes and returns to the change-list page for this type of object.

34 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

¢ Save and continue editing — Saves changes and reloads the admin page for this object.
¢ Save and add another — Saves changes and loads a new, blank form for this type of object.
 Delete — Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the question in Tutorial 1, it
probably means you forgot to set the correct value for the TIME_ZONE setting. Change it, reload the page and

check that the correct value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then click “Save and continue
editing.” Then click “History” in the upper right. You’ll see a page listing all changes made to this object via

the Django admin, with the timestamp and username of the person who made the change:

Change history: What's up?

DATE/TIME USER ACTION

Aug. 2, 2024, 7:49 a.m. admin Added.

Aug. 2, 2024, 7:56 a.m. admin Changed Date published.
2 entries

When you’re comfortable with the models APT and have familiarized yourself with the admin site, read part
3 of this tutorial to learn about how to add more views to our polls app.
2.5 Writing your first Django app, part 3

This tutorial begins where Tutorial 2 left off. We're continuing the web-poll application and will focus on

creating the public interface — “views.”

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.5.1 Overview

A view is a “type” of web page in your Django application that generally serves a specific function and has a

specific template. For example, in a blog application, you might have the following views:
¢ Blog homepage — displays the latest few entries.

¢ Entry “detail” page — permalink page for a single entry.

2.5. Writing your first Django app, part 3 35

Django Documentation, Release 5.2.7.dev20250917080137

¢ Year-based archive page — displays all months with entries in the given year.

Month-based archive page — displays all days with entries in the given month.
¢ Day-based archive page — displays all entries in the given day.
e Comment action — handles posting comments to a given entry.
In our poll application, we’ll have the following four views:
* Question “index” page — displays the latest few questions.
¢ Question “detail” page — displays a question text, with no results but with a form to vote.
¢ Question “results” page — displays results for a particular question.
» Vote action — handles voting for a particular choice in a particular question.

In Django, web pages and other content are delivered by views. Each view is represented by a Python func-
tion (or method, in the case of class-based views). Django will choose a view by examining the URL that’s

requested (to be precise, the part of the URL after the domain name).

Now in your time on the web you may have come across such beauties as ME2/Sites/dirmod.htm?
sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B. You will be pleased to know that Django

allows us much more elegant URL patterns than that.
A URL pattern is the general form of a URL - for example: /newsarchive/<year>/<month>/.

To get from a URL to a view, Django uses what are known as ‘URLconfs’. A URLconf maps URL patterns to

views.

This tutorial provides basic instruction in the use of URLconfs, and you can refer to URL dispatcher for more

information.

2.5.2 Writing more views

Now let’s add a few more views to polls/views.py. These views are slightly different, because they take an

argument:

Listing 16: polls/views.py

def detail(request, question_id):

return HttpResponse('"You're looking at question %s." % question_id)

def results(request, question_id):
response = "You're looking at the results of question %s."

return HttpResponse(response % question_id)

(continues on next page)

36 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
def vote(request, question_id):

return HttpResponse('"You're voting on question %s." % question_id)

Wire these new views into the polls.urls module by adding the following path () calls:

Listing 17: polls/urls.py

from django.urls import path

from . import views

urlpatterns = [

path("", views.index, name="index"),

path("<int:question_id>/", views.detail, name="detail"),

path("<int:question_id>/results/", views.results, name='"results"),

path("<int:question_id>/vote/", views.vote, name="vote'),

Take a look in your browser, at “/polls/34/”. It’ll run the detail () function and display whatever ID you pro-
vide in the URL. Try “/polls/34/results/” and “/polls/34/vote/” too — these will display the placeholder results

and voting pages.

When somebody requests a page from your website — say, “/polls/34/”, Django will load the mysite.urls
Python module because it’s pointed to by the ROOT URLCONF setting. It finds the variable named urlpatterns
and traverses the patterns in order. After finding the match at 'polls/', it strips off the matching text
("polls/") and sends the remaining text — "34/" — to the ‘polls.urls’ URLconf for further processing. There

it matches '<int:question_id>/"', resulting in a call to the detail () view like so:

detail (request=<HttpRequest object>, question_id=34)

The question_id=34 part comes from <int:question_id>. Using angle brackets “captures” part of the URL
and sends it as a keyword argument to the view function. The question_id part of the string defines the
name that will be used to identify the matched pattern, and the int part is a converter that determines what

patterns should match this part of the URL path. The colon (:) separates the converter and pattern name.

2.5. Writing your first Django app, part 3 37

Django Documentation, Release 5.2.7.dev20250917080137

2.5.3 Write views that actually do something

Each view is responsible for doing one of two things: returning an HttpResponse object containing the con-

tent for the requested page, or raising an exception such as Http404. The rest is up to you.

Your view can read records from a database, or not. It can use a template system such as Django’s — or a
third-party Python template system — or not. It can generate a PDF file, output XML, create a ZIP file on the

fly, anything you want, using whatever Python libraries you want.
All Django wants is that HttpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered in Tutorial 2. Here’s one
stab at a new index () view, which displays the latest 5 poll questions in the system, separated by commas,

according to publication date:

Listing 18: polls/views.py

from django.http import HttpResponse

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by("-pub_date")[:5]
output = ", ".join([q.question_text for q in latest_question_list])

return HttpResponse (output)

There’s a problem here, though: the page’s design is hard-coded in the view. If you want to change the way
the page looks, you’ll have to edit this Python code. So let’s use Django’s template system to separate the

design from Python by creating a template that the view can use.
First, create a directory called templates in your polls directory. Django will look for templates in there.

Your project’s TEMPLATES setting describes how Django will load and render templates. The default set-
tings file configures a DjangoTemplates backend whose 4PP_DIRS option is set to True. By convention
DjangoTemplates looks for a “templates” subdirectory in each of the TNSTALLED_APPS.

Within the templates directory you have just created, create another directory called polls, and within that
create a file called index.html. In other words, your template should be at polls/templates/polls/index.
html. Because of how the app_directories template loader works as described above, you can refer to this

template within Django as polls/index.html.

38 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

©® Template namespacing

Now we might be able to get away with putting our templates directly in polls/templates (rather than
creating another polls subdirectory), but it would actually be a bad idea. Django will choose the first
template it finds whose name matches, and if you had a template with the same name in a different
application, Django would be unable to distinguish between them. We need to be able to point Django at
the right one, and the best way to ensure this is by namespacing them. That is, by putting those templates

inside another directory named for the application itself.

Put the following code in that template:

Listing 19: polls/templates/polls/index.html

if latest_question_list

for question in latest_question_list
{{ question.question_text }}</1li>
endfor

else
<p>No polls are available.</p>

endif

O Note

To make the tutorial shorter, all template examples use incomplete HTML. In your own projects you

should use complete HTML documents.

Now let’s update our index view in polls/views.py to use the template:

Listing 20: polls/views.py

from django.http import HttpResponse

from django.template import loader

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by("-pub_date") [:5]
template = loader.get_template("polls/index.html")

(continues on next page)

2.5. Writing your first Django app, part 3 39

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
context = {"latest_question_list": latest_question_list}

return HttpResponse(template.render(context, request))

That code loads the template called polls/index.html and passes it a context. The context is a dictionary

mapping template variable names to Python objects.

Load the page by pointing your browser at “/polls/”, and you should see a bulleted-list containing the “What’s
up” question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render()

It’s a very common idiom to load a template, fill a context and return an #t tpResponse object with the result

of the rendered template. Django provides a shortcut. Here’s the full index() view, rewritten:

Listing 21: polls/views.py

from django.shortcuts import render

from .models import Question

def index(request):
latest_question_list = Question.objects.order_by("-pub_date")[:5]
context = {"latest_question_list": latest_question_list}

return render(request, "polls/index.html", context)

Note that once we’ve done this in all these views, we no longer need to import loader and HttpResponse

(you’ll want to keep HttpResponse if you still have the stub methods for detail, results, and vote).

The render () function takes the request object as its first argument, a template name as its second argument
and a dictionary as its optional third argument. It returns an HttpResponse object of the given template

rendered with the given context.

2.5.4 Raising a 404 error

Now, let’s tackle the question detail view — the page that displays the question text for a given poll. Here’s

the view:

Listing 22: polls/views.py

from django.http import Http404

from django.shortcuts import render

from .models import Question
(continues on next page)

40 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def detail(request, question_id):
try:
question = Question.objects.get(pk=question_id)
except Question.DoesNotExist:
raise Http404(”Question does not exist")

return render(request, "polls/detail.html", {"question": questionl})

The new concept here: The view raises the Http404 exception if a question with the requested ID doesn’t

exist.

We'll discuss what you could put in that polls/detail.html template a bit later, but if you’d like to quickly

get the above example working, a file containing just:

Listing 23: polls/templates/polls/detail.html

question

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get () and raise Http404 if the object doesn’t exist. Django provides a

shortcut. Here’s the detail () view, rewritten:

Listing 24: polls/views.py

from django.shortcuts import get_object_or_404, render

from .models import Question

def detail(request, question_id):
question = get_object_or_404(Question, pk=question_id)

return render(request, "polls/detail.html", {"question': question})

The get_object_or_ 404 () function takes a Django model as its first argument and an arbitrary number of
keyword arguments, which it passes to the get () function of the model’s manager. It raises Http404 if the

object doesn’t exist.

2.5. Writing your first Django app, part 3 41

Django Documentation, Release 5.2.7.dev20250917080137

© Philosophy

Why do we use a helper function get_object_or 404() instead of automatically catching the
ObjectDoesNotEzist exceptions at a higher level, or having the model API raise Http404 instead of
ObjectDoesNotErist?

Because that would couple the model layer to the view layer. One of the foremost design goals of Django

is to maintain loose coupling. Some controlled coupling is introduced in the django. shortcuts module.

There’s also a get_list_or_404() function, which works just as get_object_or_ 404 () — except using
filter() instead of get (). It raises Ht tp404 if the list is empty.

2.5.5 Use the template system

Back to the detail () view for our poll application. Given the context variable question, here’s what the
polls/detail.html template might look like:

Listing 25: polls/templates/polls/detail .html

<h1>{{ question.question_text }}</h1>

for choice in question.choice_set.all
<1li> choice.choice_text </1li>
endfor

The template system uses dot-lookup syntax to access variable attributes. In the example of {{ question.
question_text }}, first Django does a dictionary lookup on the object question. Failing that, it tries an
attribute lookup — which works, in this case. If attribute lookup had failed, it would’ve tried a list-index

lookup.

Method-calling happensin the {7 for %}loop: question.choice_set.allisinterpreted asthe Python code
question.choice_set.all(), which returns an iterable of Choice objects and is suitable for use in the {7
for J}tag.

See the template guide for more about templates.

2.5.6 Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html template, the link was partially
hardcoded like this:

<1li>{{ question.question_text }}</1i>

The problem with this hardcoded, tightly-coupled approach is that it becomes challenging to change URLs

42 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

on projects with a lot of templates. However, since you defined the name argument in the path () functions in
the polls.urls module, you can remove a reliance on specific URL paths defined in your url configurations

by using the {% url %} template tag:

{{ question.question_text </1i>

The way this works is by looking up the URL definition as specified in the polls.urls module. You can see
exactly where the URL name of ‘detail’ is defined below:

path("<int:question_id>/", views.detail, name='"detail"),

If you want to change the URL of the polls detail view to something else, perhaps to something like polls/
specifics/12/ instead of doing it in the template (or templates) you would change it in polls/urls.py:

path("specifics/<int:question_id>/", views.detail, name="detail"),

2.5.7 Namespacing URL names

The tutorial project has just one app, polls. In real Django projects, there might be five, ten, twenty apps
or more. How does Django differentiate the URL names between them? For example, the polls app has a
detail view, and so might an app on the same project that is for a blog. How does one make it so that Django

knows which app view to create for a url when using the {%, url %} template tag?

The answer is to add namespaces to your URLconf. In the polls/urls.py file, go ahead and add an app_name

to set the application namespace:

Listing 26: polls/urls.py

from django.urls import path

from . import views

app_name = "polls"
urlpatterns = [
path("", views.index, name="index"),

path("<int:question id>/", views.detail, name="detail"),

path("<int:question_id>/results/", views.results, name="results"),

(continues on next page)

2.5. Writing your first Django app, part 3 43

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

path('"<int:question_id>/vote/", views.vote, name="vote"),

Now change your polls/index.html template from:

Listing 27: polls/templates/polls/index.html

{{ question.question_text }}</1li>

to point at the namespaced detail view:

Listing 28: polls/templates/polls/index.html

{{ question.question_text }}</1li>

When you're comfortable with writing views, read part 4 of this tutorial to learn the basics about form
processing and generic views.

2.6 Writing your first Django app, part 4

This tutorial begins where Tutorial 3 left off. We're continuing the web-poll application and will focus on

form processing and cutting down our code.

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.6.1 Write a minimal form

Let’s update our poll detail template (“polls/detail.html”) from the last tutorial, so that the template contains
an HTML <form> element:

Listing 29: polls/templates/polls/detail .html

<form action="{J) url 'polls:vote' question.id /}" method="post'">

{/ csrf_token /}

<fieldset>
<legend><h1>{{ question.question_text }}</h1></legend>
{7, if error_message /}<p>{{ error_message }}</p>{/ endif J}
{}, for choice in question.choice_set.all 7}

<input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{,

(continues on next page)

44 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

—choice.id ">
<label for='choice .counter "> choice.choice_text </label>

endfor

</fieldset>

<input type="submit" value="Vote'">

</form>

A quick rundown:

» The above template displays a radio button for each question choice. The value of each radio button
is the associated question choice’s ID. The name of each radio button is "choice". That means, when
somebody selects one of the radio buttons and submits the form, it’ll send the POST data choice=#
where # is the ID of the selected choice. This is the basic concept of HTML forms.

o We set the form’s action to {% url 'polls:vote' question.id %}, and we set method="post". Us-
ing method="post" (as opposed to method="get") is very important, because the act of submitting
this form will alter data server-side. Whenever you create a form that alters data server-side, use

method="post". This tip isn’t specific to Django; it’s good web development practice in general.
e forloop.counter indicates how many times the for tag has gone through its loop

¢ Since we're creating a POST form (which can have the effect of modifying data), we need to worry
about Cross Site Request Forgeries. Thankfully, you don’t have to worry too hard, because Django
comes with a helpful system for protecting against it. In short, all POST forms that are targeted at
internal URLs should use the {7 csrf_token /}template tag.

Now, let’s create a Django view that handles the submitted data and does something with it. Remember, in

Tutorial 3, we created a URLconf for the polls application that includes this line:

Listing 30: polls/urls.py

path("<int:question_id>/vote/", views.vote, name='"vote"),

We also created a dummy implementation of the vote() function. Let’s create a real version. Add the

following to polls/views.py:

Listing 31: polls/views.py

from django.db.models import F
from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render

from django.urls import reverse

from .models import Choice, Question

(continues on next page)

2.6. Writing your first Django app, part 4 45

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def vote(request, question_id):

question = get_object_or_404(Question, pk=question_id)
try:
selected_choice = question.choice_set.get (pk=request.POST["choice"])

except (KeyError, Choice.DoesNotExist):

return render (
request,
"polls/detail .html",
{
"question": question,
"error_message": "You didn't select a choice.",
},
)
else:
selected_choice.votes = F("votes") + 1

selected_choice.save()

return HttpResponseRedirect(reverse('"polls:results", args=(question.id,)))

This code includes a few things we haven’t covered yet in this tutorial:

¢ request.POST is a dictionary-like object that lets you access submitted data by key name. In this case,

request.POST['choice'] returns the ID of the selected choice, as a string. request.POST values are

always strings.

Note that Django also provides request.GET for accessing GET data in the same way — but we're

explicitly using request.POST in our code, to ensure that data is only altered via a POST call.

request.POST['choice'] will raise KeyError if choice wasn’t provided in POST data. The above code

checks for KeyError and redisplays the question form with an error message if choice isn’t given.
F("votes") + 1 instructs the database to increase the vote count by 1.

After incrementing the choice count, the code returns an HttpResponseRedirect rather than a normal
HttpResponse. HttpResponseRedirect takes a single argument: the URL to which the user will be

redirected (see the following point for how we construct the URL in this case).

As the Python comment above points out, you should always return an HttpResponseRedirect af-

46

Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

ter successfully dealing with POST data. This tip isn’t specific to Django; it’s good web development

practice in general.

e We are using the reverse () function in the HttpResponseRedirect constructor in this example. This
function helps avoid having to hardcode a URL in the view function. It is given the name of the view
that we want to pass control to and the variable portion of the URL pattern that points to that view.

In this case, using the URLconf we set up in Tutorial 3, this reverse () call will return a string like

"/polls/3/results/"

where the 3 is the value of question.id. This redirected URL will then call the 'results' view to

display the final page.

As mentioned in Tutorial 3, request is an HttpRequest object. For more on HttpRequest objects, see the

request and response documentation.

After somebody votes in a question, the vote () view redirects to the results page for the question. Let’s write

that view:

Listing 32: polls/views.py

from django.shortcuts import get_object_or_404, render

def results(request, question_id):
question = get_object_or_404(Question, pk=question_id)

return render(request, "polls/results.html", {"question": question})

This is almost exactly the same as the detail () view from Tutorial 3. The only difference is the template

name. We'll fix this redundancy later.

Now, create a polls/results.html template:

Listing 33: polls/templates/polls/results.html

<h1>{{ question.question_text }}</h1>

for choice in question.choice_set.all

<1li> choice.choice_text - choice.votes vote choice.votes|pluralize </
—1i>
endfor

Vote again?

2.6. Writing your first Django app, part 4 47

Django Documentation, Release 5.2.7.dev20250917080137

Now, go to /polls/1/ in your browser and vote in the question. You should see a results page that gets
updated each time you vote. If you submit the form without having chosen a choice, you should see the error

message.

2.6.2 Use generic views: Less code is better

The detail () (from Tutorial 3) and results() views are very short — and, as mentioned above, redundant.

The index () view, which displays a list of polls, is similar.

These views represent a common case of basic web development: getting data from the database according
to a parameter passed in the URL, loading a template and returning the rendered template. Because this is

so common, Django provides a shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need to write Python code to
write an app. For example, the ListView and DetalView generic views abstract the concepts of “display a

list of objects” and “display a detail page for a particular type of object” respectively.

Let’s convert our poll app to use the generic views system, so we can delete a bunch of our own code. We’ll

have to take a few steps to make the conversion. We will:
1. Convert the URLconf.
2. Delete some of the old, unneeded views.
3. Introduce new views based on Django’s generic views.

Read on for details.

©® Why the code-shuffle?

Generally, when writing a Django app, you'll evaluate whether generic views are a good fit for your
problem, and you’ll use them from the beginning, rather than refactoring your code halfway through.
But this tutorial intentionally has focused on writing the views “the hard way” until now, to focus on core

concepts.

You should know basic math before you start using a calculator.

Amend URLconf

First, open the polls/urls.py URLconf and change it like so:

Listing 34: polls/urls.py

from django.urls import path

from . import views

(continues on next page)

48 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
app_name = "polls"
urlpatterns = [
path("", views.IndexView.as_view(), name="index"),
path("<int:pk>/", views.DetailView.as_view(), name='"detail"),
path("<int:pk>/results/", views.ResultsView.as_view(), name='"results"),

path("<int:question_id>/vote/", views.vote, name="vote"),

Note that the name of the matched pattern in the path strings of the second and third patterns has changed
from <question_id> to <pk>. This is necessary because we’ll use the Deta1View generic view to replace our
detail () and results() views, and it expects the primary key value captured from the URL to be called
n n

pk".

Amend views

Next, we're going to remove our old index, detail, and results views and use Django’s generic views in-

stead. To do so, open the polls/views.py file and change it like so:

Listing 35: polls/views.py

from django.db.models import F

from django.http import HttpResponseRedirect

from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from django.views import generic

from .models import Choice, Question

class IndexView(generic.ListView):
template_name = "polls/index.html"

context_object_name = "latest_question_list"

def get_queryset():
"""Return the last five published questions."""

return Question.objects.order_by("-pub_date") [:5]

class DetailView(generic.DetailView):
model = Question
template_name = "polls/detail.html"

(continues on next page)

2.6. Writing your first Django app, part 4 49

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

class ResultsView(generic.DetailView):
model = Question

template_name = "polls/results.html"

def vote(request, question_id):

Each generic view needs to know what model it will be acting upon. This is provided using either the
model attribute (in this example, model = Question for DetailView and ResultsView) or by defining the

get_queryset () method (as shown in IndexView).

By default, the DetailView generic view uses a template called <app name>/<model name>_detail.html.
In our case, it would use the template "polls/question_detail.html". The template_name attribute is
used to tell Django to use a specific template name instead of the autogenerated default template name. We
also specify the template_name for the results list view — this ensures that the results view and the detail

view have a different appearance when rendered, even though they’re both a Deta1View behind the scenes.

Similarly, the ListView generic view uses a default template called <app name>/<model name>_list.html;

we use template_name to tell ListView to use our existing "polls/index.html" template.

In previous parts of the tutorial, the templates have been provided with a context that contains the question
and latest_question_list context variables. For DetailView the question variable is provided au-
tomatically — since we’re using a Django model (Question), Django is able to determine an appropriate
name for the context variable. However, for ListView, the automatically generated context variable is
question_list. To override this we provide the context_object_name attribute, specifying that we want to
use latest_question_list instead. As an alternative approach, you could change your templates to match

the new default context variables — but it’s a lot easier to tell Django to use the variable you want.
Run the server, and use your new polling app based on generic views.
For full details on generic views, see the generic views documentation.

When you’re comfortable with forms and generic views, read part 5 of this tutorial to learn about testing our
polls app.
2.7 Writing your first Django app, part 5

This tutorial begins where Tutorial 4 left off. We’ve built a web-poll application, and we’ll now create some

automated tests for it.

50 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

©® Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.7.1 Introducing automated testing

What are automated tests?
Tests are routines that check the operation of your code.

Testing operates at different levels. Some tests might apply to a tiny detail (does a particular model method
return values as expected?) while others examine the overall operation of the software (does a sequence of
user inputs on the site produce the desired result?). That’s no different from the kind of testing you did earlier
in Tutorial 2, using the shell to examine the behavior of a method, or running the application and entering

data to check how it behaves.

What’s different in automated tests is that the testing work is done for you by the system. You create a set
of tests once, and then as you make changes to your app, you can check that your code still works as you

originally intended, without having to perform time consuming manual testing.

Why you need to create tests
So why create tests, and why now?

You may feel that you have quite enough on your plate just learning Python/Django, and having yet another
thing to learn and do may seem overwhelming and perhaps unnecessary. After all, our polls application is
working quite happily now; going through the trouble of creating automated tests is not going to make it
work any better. If creating the polls application is the last bit of Django programming you will ever do, then
true, you don’t need to know how to create automated tests. But, if that’s not the case, now is an excellent

time to learn.

Tests will save you time

Up to a certain point, ‘checking that it seems to work’ will be a satisfactory test. In a more sophisticated

application, you might have dozens of complex interactions between components.

A change in any of those components could have unexpected consequences on the application’s behavior.
Checking that it still ‘seems to work’ could mean running through your code’s functionality with twenty
different variations of your test data to make sure you haven’t broken something - not a good use of your

time.

That’s especially true when automated tests could do this for you in seconds. If something’s gone wrong,

tests will also assist in identifying the code that’s causing the unexpected behavior.

Sometimes it may seem a chore to tear yourself away from your productive, creative programming work

to face the unglamorous and unexciting business of writing tests, particularly when you know your code is

2.7. Writing your first Django app, part 5 51

Django Documentation, Release 5.2.7.dev20250917080137

working properly.

However, the task of writing tests is a lot more fulfilling than spending hours testing your application man-

ually or trying to identify the cause of a newly-introduced problem.

Tests don’t just identify problems, they prevent them

It’s a mistake to think of tests merely as a negative aspect of development.

Without tests, the purpose or intended behavior of an application might be rather opaque. Even when it’s

your own code, you will sometimes find yourself poking around in it trying to find out what exactly it’s doing.

Tests change that; they light up your code from the inside, and when something goes wrong, they focus light

on the part that has gone wrong - even if you hadn’t even realized it had gone wrong.

Tests make your code more attractive

You might have created a brilliant piece of software, but you will find that many other developers will refuse
to look at it because it lacks tests; without tests, they won’t trust it. Jacob Kaplan-Moss, one of Django’s

original developers, says “Code without tests is broken by design.”

That other developers want to see tests in your software before they take it seriously is yet another reason

for you to start writing tests.

Tests help teams work together

The previous points are written from the point of view of a single developer maintaining an application.
Complex applications will be maintained by teams. Tests guarantee that colleagues don’t inadvertently
break your code (and that you don’t break theirs without knowing). If you want to make a living as a Django

programmer, you must be good at writing tests!

2.7.2 Basic testing strategies
There are many ways to approach writing tests.

Some programmers follow a discipline called “test-driven development”; they actually write their tests before
they write their code. This might seem counterintuitive, but in fact it’s similar to what most people will of ten
do anyway: they describe a problem, then create some code to solve it. Test-driven development formalizes

the problem in a Python test case.

More often, a newcomer to testing will create some code and later decide that it should have some tests.

Perhaps it would have been better to write some tests earlier, but it’s never too late to get started.

Sometimes it’s difficult to figure out where to get started with writing tests. If you have written several
thousand lines of Python, choosing something to test might not be easy. In such a case, it’s fruitful to write

your first test the next time you make a change, either when you add a new feature or fix a bug.

So let’s do that right away.

52 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

2.7.3 Writing our first test

We identify a bug

Fortunately, there’s a little bug in the polls application for us to fix right away: the Question.
was_published_recently() method returns True if the Question was published within the last day (which

is correct) but also if the Question’s pub_date field is in the future (which certainly isn’t).

Confirm the bug by using the shell to check the method on a question whose date lies in the future:

$ python manage.py shell

>>> import datetime

>>> from django.utils import timezone

>>>

>>> future_question = Question(pub_date=timezone.now() + datetime.timedelta(days=30))
>>>

>>> future_question.was_published_recently()

True

Since things in the future are not ‘recent’, this is clearly wrong.

Create a test to expose the bug

What we’ve just done in the shell to test for the problem is exactly what we can do in an automated test,

so let’s turn that into an automated test.

A conventional place for an application’s tests is in the application’s tests.py file; the testing system will

automatically find tests in any file whose name begins with test.

Put the following in the tests.py file in the polls application:

Listing 36: polls/tests.py

import datetime

from django.test import TestCase

from django.utils import timezone

from .models import Question

class QuestionModelTests(TestCase):

def test_was_published_recently_with_future_question()

(continues on next page)

2.7. Writing your first Django app, part 5 53

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
was_published_recently() returns False for questions whose pub_date
is in the future.
nmnn
time = timezone.now() + datetime.timedelta(days=30)

future_question = Question(pub_date=time)

.assertIs(future_question.was_published_recently(), False)

Here we have created a django.test.TestCase subclass with a method that creates a Question instance
with a pub_date in the future. We then check the output of was_published_recently () - which ought to
be False.

Running tests

In the terminal, we can run our test:

$ python manage.py polls

and you’ll see something like:

Creating database for 'default'...
System check identified no issues (0 silenced).
B

FAIL: test_was_published_recently_with_future_question (polls.tests.QuestionModelTests)
Traceback (most recent call last):
File "/path/to/djangotutorial/polls/tests.py", line 16, in test_was_published_recently_
—with_future_question
self.assertIs(future_question.was_published_recently(), False)

AssertionError: True is not False

FAILED (failures=1)

Destroying database for 'default'...

©® Different error?

If instead you're getting a NameError here, you may have missed a step in Part 2 where we added imports

of datetime and timezone to polls/models.py. Copy the imports from that section, and try running

54 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

your tests again.

What happened is this:
* manage.py test polls looked for tests in the polls application
¢ it found a subclass of the django. test. TestCase class
e it created a special database for the purpose of testing
o it looked for test methods - ones whose names begin with test

¢ in test_was_published_recently_with_future_question it created a Question instance whose

pub_date field is 30 days in the future

e ...and using the assertIs() method, it discovered that its was_published_recently () returns True,

though we wanted it to return False

The test informs us which test failed and even the line on which the failure occurred.

Fixing the bug

We already know what the problem is: Question.was_published_recently() should return False if its
pub_date is in the future. Amend the method in models. py, so that it will only return True if the date is also

in the past:

Listing 37: polls/models.py

def was_published_recently(K
now = timezone.now()

return now - datetime.timedelta(days=1) <= .pub_date <= now

and run the test again:

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

Ran 1 test in 0.001s

0K

Destroying test database for alias 'default'...

After identifying a bug, we wrote a test that exposes it and corrected the bug in the code so our test passes.

Many other things might go wrong with our application in the future, but we can be sure that we won’t
inadvertently reintroduce this bug, because running the test will warn us immediately. We can consider this

little portion of the application pinned down safely forever.

2.7. Writing your first Django app, part 5 55

Django Documentation, Release 5.2.7.dev20250917080137

More comprehensive tests

While we're here, we can further pin down the was_published_recently() method; in fact, it would be

positively embarrassing if in fixing one bug we had introduced another.

Add two more test methods to the same class, to test the behavior of the method more comprehensively:

Listing 38: polls/tests.py

def test_was_published_recently_with_old_question(E
was_published_recently() returns False for questions whose pub_date
is older than 1 day.
time = timezone.now() - datetime.timedelta(days=1, seconds=1)
0ld_question = Question(pub_date=time)

.assertIs(old_question.was_published_recently(), False)

def test_was_published_recently_with_recent_question()
was_published recently() returns True for questions whose pub_date
is within the last day.
nmuan
time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59)
recent_question = Question(pub_date=time)

.assertIs(recent_question.was_published_recently(), True)

And now we have three tests that confirm that Question.was_published_recently () returns sensible val-

ues for past, recent, and future questions.

Again, polls is a minimal application, but however complex it grows in the future and whatever other code
it interacts with, we now have some guarantee that the method we have written tests for will behave in

expected ways.

2.7.4 Test a view

The polls application is fairly undiscriminating: it will publish any question, including ones whose pub_date
field lies in the future. We should improve this. Setting a pub_date in the future should mean that the

Question is published at that moment, but invisible until then.

56 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

A test for a view

When we fixed the bug above, we wrote the test first and then the code to fix it. In fact that was an example

of test-driven development, but it doesn’t really matter in which order we do the work.

In our first test, we focused closely on the internal behavior of the code. For this test, we want to check its

behavior as it would be experienced by a user through a web browser.

Before we try to fix anything, let’s have a look at the tools at our disposal.

The Django test client

Django provides a test Client to simulate a user interacting with the code at the view level. We can use it in

tests.py or even in the shell.

We will start again with the shell, where we need to do a couple of things that won’t be necessary in tests.

py. The first is to set up the test environment in the sheli:

$ python manage.py shell

>>> from django.test.utils import setup_test_environment

>>> setup_test_environment ()

setup_test_environment () installs a template renderer which will allow us to examine some additional at-
tributes on responses such as response. context that otherwise wouldn’t be available. Note that this method
does not set up a test database, so the following will be run against the existing database and the output may
differ slightly depending on what questions you already created. You might get unexpected results if your

TIME_ZONE in settings.py isn’t correct. If you don’t remember setting it earlier, check it before continuing.

Next we need to import the test client class (later in tests.py we will use the django. test. TestCase class,

which comes with its own client, so this won’t be required):

>>> from django.test import Client

>>>

>>> client = Client()

With that ready, we can ask the client to do some work for us:

>>>

>>> response = client.get("/")
Not Found: /

>>>

>>>

>>>

>>> response.status_code

(continues on next page)

2.7. Writing your first Django app, part 5 57

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
404
>>> # on the other hand we should ezpect to find something at '/polls/’
>>> # we'll use 'reverse()' rather than a hardcoded URL
>>> from django.urls import reverse
>>> response = client.get(reverse('polls:index"))

>>> response.status_code

200

>>> response.content

b'\n \n \n What's up?</1li>\n \n
—\n\n'

>>> response.context["latest_question_list"]

<QuerySet [<Question: What's up?>]>

Improving our view

The list of polls shows polls that aren’t published yet (i.e. those that have a pub_date in the future). Let’s fix
that.

In Tutorial 4 we introduced a class-based view, based on ListVieuw:

Listing 39: polls/views.py

class IndexView(generic.ListView):
template_name = "polls/index.html"

context_object_name = "latest_question_list"

def get_queryset(self):
"""Return the last five published questions."""

return Question.objects.order_by("-pub_date") [:5]

We need to amend the get_queryset () method and change it so that it also checks the date by comparing

it with timezone.now(). First we need to add an import:

Listing 40: polls/views.py

from django.utils import timezone

and then we must amend the get_queryset method like so:

Listing 41: polls/views.py

def get_queryset(self):

(continues on next page)

58 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
Return the last five published questions (not including those set to be

published in the future).

mnnn

return Question.objects.filter(pub_date__lte=timezone.now()).order_by("-pub_date") [

35

Question.objects.filter (pub_date__lte=timezone.now()) returns a queryset containing Questions

whose pub_date is less than or equal to - that is, earlier than or equal to - timezone.now ().

Testing our new view

Now you can satisfy yourself that this behaves as expected by firing up runserver, loading the site in your
browser, creating a few Question entries with dates in the past and future, and checking that only those that
have been published are listed. You don’t want to have to do that every single time you make any change

that might affect this - so let’s also create a test, based on our shell session above.

Add the following to polls/tests.py:

Listing 42: polls/tests.py

from django.urls import reverse

and we’ll create a shortcut function to create questions as well as a new test class:

Listing 43: polls/tests.py

def create_question(question_text, days):
Create a question with the given "question_text ™ and published the
given number of “days’ offset to now (negative for questions published
in the past, positive for questions that have yet to be published) .
time = timezone.now() + datetime.timedelta(days=days)

return Question.objects.create(question_text=question_text, pub_date=time)

class QuestionIndexViewTests(TestCase):
def test_no_questions(DK

nmnn

If no questions exist, an appropriate message is displayed.

nun

response = .client.get(reverse("polls:index"))
(continues on next page)

2.7. Writing your first Django app, part 5 59

Django Documentation, Release 5.2.7.dev20250917080137

def

def

def

def

(continued from previous page)
self.assertEqual (response.status_code, 200)
self.assertContains(response, "lNo polls are available.")

self.assertQuerySetEqual (response.context["latest question list"], [])

test_past_question(self):
Questions with a pub_date in the past are displayed on the
index page.
question = create_question(question_text='"Past question.", days=-30)
response = self.client.get(reverse("polls:index"))
self.assertQuerySetEqual(

response.context ["latest_question_list"],

[question],

test_future_question(self):

Questions with a pub_date in the future aren't displayed on
the index page.

create_question(question_text="Future question.", days=30)
response = self.client.get(reverse('"polls:index"))
self.assertContains(response, "No polls are available.")

self.assertQuerySetEqual (response.context["latest question_ list"], [])

test_future_question_and_past_question(self):
nun
Even if both past and future questions exist, only past questions
are displayed.
question = create_question(question_text="Past question.", days=-30)
create_question(question_text="Future question.", days=30)
response = self.client.get(reverse('"polls:index"))
self.assertQuerySetEqual(

response.context["latest_question_list"],

[question],

test_two_past_questions(self):

(continues on next page)

60

Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

nun

The questions index page may display multiple questions.

nmnn

questionl = create_question(question_text="Past question 1.", days=-30)

question2 = create_question(question_text="Past question 2.", days=-5)
response = .client.get (reverse("polls:index"))
.assertQuerySetEqual(
response.context["latest_question_list"],

[question2, questioni],

Let’s look at some of these more closely.

First is a question shortcut function, create_question, to take some repetition out of the process of creating

questions.

test_no_questions doesn’t create any questions, but checks the message: “No polls are available.” and
verifies the latest_question_list is empty. Note that the django.test.TestCase class provides some

additional assertion methods. In these examples, we use assertContains () and assertQuerySetEqual ().
In test_past_question, we create a question and verify that it appears in the list.

In test_future_question, we create a question with a pub_date in the future. The database is reset for
each test method, so the first question is no longer there, and so again the index shouldn’t have any questions
in it.

And so on. In effect, we are using the tests to tell a story of admin input and user experience on the site, and

checking that at every state and for every new change in the state of the system, the expected results are
published.

Testing the DetailView

What we have works well; however, even though future questions don’t appear in the index, users can still

reach them if they know or guess the right URL. So we need to add a similar constraint to DetailView:

Listing 44: polls/views.py

class DetailView(generic.DetailView):

def get_queryset():

nun

Excludes any questions that aren't published yet.

nnn

(continues on next page)

2.7. Writing your first Django app, part 5 61

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

return Question.objects.filter(pub_date__lte=timezone.now())

We should then add some tests, to check that a Question whose pub_date is in the past can be displayed,

and that one with a pub_date in the future is not:

Listing 45: polls/tests.py

class QuestionDetailViewTests(TestCase):
def test_future_question()
The detail view of a question with a pub_date in the future
returns a 404 not found.
future_question = create_question(question_text="Future question.", days=5)
url = reverse('polls:detail", args=(future_question.id,))
response = .client.get (url)

.assertEqual (response.status_code, 404)

def test_past_question(DE
nmnn
The detail view of a question with a pub_date in the past
displays the question's text.
past_question = create_question(question_text="Past (Question.", days=-5)
url = reverse('"polls:detail", args=(past_question.id,))
response = .client.get (url)

.assertContains(response, past_question.question_text)

Ideas for more tests

We ought to add a similar get_queryset method to ResultsView and create a new test class for that view.

It be very similar to what we have just created; in fact there will be a lot of repetition.

We could also improve our application in other ways, adding tests along the way. For example, it’s pointless
that a Question with no related Choice can be published on the site. So, our views could check for this, and
exclude such Question objects. Our tests would create a Question without a Choice, and then test that it’s

not published, as well as create a similar Question with at least one Choice, and test that it is published.

Perhaps logged-in admin users should be allowed to see unpublished Question entries, but not ordinary
visitors. Again: whatever needs to be added to the software to accomplish this should be accompanied by a
test, whether you write the test first and then make the code pass the test, or work out the logic in your code

first and then write a test to prove it.

62 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

At a certain point you are bound to look at your tests and wonder whether your code is suffering from test

bloat, which brings us to:

2.7.5 When testing, more is better

It might seem that our tests are growing out of control. At this rate there will soon be more code in our tests
than in our application, and the repetition is unaesthetic, compared to the elegant conciseness of the rest of

our code.

It doesn’t matter. Let them grow. For the most part, you can write a test once and then forget about it. It

will continue performing its useful function as you continue to develop your program.

Sometimes tests will need to be updated. Suppose that we amend our views so that only Question entries
with associated Choice instances are published. In that case, many of our existing tests will fail - telling
us exactly which tests need to be amended to bring them up to date, so to that extent tests help look after

themselves.

At worst, as you continue developing, you might find that you have some tests that are now redundant. Even

that’s not a problem; in testing redundancy is a good thing.

Aslong as your tests are sensibly arranged, they won’t become unmanageable. Good rules-of-thumb include
having;:
e a separate TestClass for each model or view

¢ a separate test method for each set of conditions you want to test

e test method names that describe their function

2.7.6 Further testing

This tutorial only introduces some of the basics of testing. There’s a great deal more you can do, and a

number of very useful tools at your disposal to achieve some very clever things.

For example, while our tests here have covered some of the internal logic of a model and the way our views
publish information, you can use an “in-browser” framework such as Selenium to test the way your HTML
actually renders in a browser. These tools allow you to check not just the behavior of your Django code,
but also, for example, of your JavaScript. It’s quite something to see the tests launch a browser, and start
interacting with your site, as if a human being were driving it! Django includes LiveServerTestCase to

facilitate integration with tools like Selenium.

If you have a complex application, you may want to run tests automatically with every commit for the

purposes of continuous integration, so that quality control is itself - at least partially - automated.

A good way to spot untested parts of your application is to check code coverage. This also helps identify
fragile or even dead code. If you can’t test a piece of code, it usually means that code should be refactored or

removed. Coverage will help to identify dead code. See Integration with coverage.py for details.

Testing in Django has comprehensive information about testing.

2.7. Writing your first Django app, part 5 63

Django Documentation, Release 5.2.7.dev20250917080137

2.7.7 What’s next?

For full details on testing, see Testing in Django.

When you’re comfortable with testing Django views, read part 6 of this tutorial to learn about static files

management.

2.8 Writing your first Django app, part 6

This tutorial begins where Tutorial 5 left off. We’ve built a tested web-poll application, and we’ll now add a

stylesheet and an image.

Aside from the HTML generated by the server, web applications generally need to serve additional files —
such as images, JavaScript, or CSS — necessary to render the complete web page. In Django, we refer to these

files as “static files”.

For small projects, this isn’t a big deal, because you can keep the static files somewhere your web server can
find it. However, in bigger projects — especially those comprised of multiple apps — dealing with the multiple

sets of static files provided by each application starts to get tricky.

That’s what django.contrib.staticfiles is for: it collects static files from each of your applications (and

any other places you specify) into a single location that can easily be served in production.

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.8.1 Customize your app’s look and feel

First, create a directory called static in your polls directory. Django will look for static files there, similarly

to how Django finds templates inside polls/templates/.

Django’s STATICFILES_FINDERS setting contains a list of finders that know how to discover static files from
various sources. One of the defaults is AppDirectoriesFinder which looks for a “static” subdirectory in
each of the INSTALLED_APPS, like the one in polls we just created. The admin site uses the same directory

structure for its static files.

Within the static directory you have just created, create another directory called polls and within that
create a file called style.css. In other words, your stylesheet should be at polls/static/polls/style.
css. Because of how the AppDirectoriesFinder staticfile finder works, you can refer to this static file in

Django as polls/style.css, similar to how you reference the path for templates.

O Sstatic file namespacing

64 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Just like templates, we might be able to get away with putting our static files directly in polls/static
(rather than creating another polls subdirectory), but it would actually be a bad idea. Django will choose
the first static file it finds whose name matches, and if you had a static file with the same name in a different
application, Django would be unable to distinguish between them. We need to be able to point Django at
the right one, and the best way to ensure this is by namespacing them. That is, by putting those static

files inside another directory named for the application itself.

Put the following code in that stylesheet (polls/static/polls/style.css):

Listing 46: polls/static/polls/style.css

1i a {

color: green;

Next, add the following at the top of polls/templates/polls/index.html:

Listing 47: polls/templates/polls/index.html

load static

<link rel="stylesheet" href=" static 'polls/style.css' ">

The {% static %} template tag generates the absolute URL of static files.
That’s all you need to do for development.

Start the server (or restart it if it’s already running):

$ python manage.py runserver

Reload http://localhost:8000/polls/ and you should see that the question links are green (Django style!)

which means that your stylesheet was properly loaded.

2.8.2 Adding a background-image

Next, we'll create a subdirectory for images. Create an images subdirectory in the polls/static/polls/
directory. Inside this directory, add any image file that you’d like to use as a background. For the purposes
of this tutorial, we’re using a file named background.png, which will have the full path polls/static/
polls/images/background.png.

Then, add a reference to your image in your stylesheet (polls/static/polls/style.css):

2.8. Writing your first Django app, part 6 65

Django Documentation, Release 5.2.7.dev20250917080137

Listing 48: polls/static/polls/style.css

body {

background: white ("images/background.png") no-repeat;

Reload http://localhost:8000/polls/ and you should see the background loaded in the top left of the

screen.

A Warning

The {% static %} template tag is not available for use in static files which aren’t generated by Django,
like your stylesheet. You should always use relative paths to link your static files between each other,
because then you can change STATIC_URL (used by the statictemplate tag to generate its URLs) without

having to modify a bunch of paths in your static files as well.

These are the basics. For more details on settings and other bits included with the framework see the static

files howto and the staticfiles reference. Deploying static files discusses how to use static files on a real server.

When you’re comfortable with the static files, read part 7 of this tutorial to learn how to customize Django’s
automatically-generated admin site.

2.9 Writing your first Django app, part 7

This tutorial begins where Tutorial 6 left off. We're continuing the web-poll application and will focus on

customizing Django’s automatically-generated admin site that we first explored in Tutorial 2.

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.9.1 Customize the admin form

By registering the Question model with admin.site.register (Question), Django was able to construct a
default form representation. Often, you’ll want to customize how the admin form looks and works. You’'ll

do this by telling Django the options you want when you register the object.

Let’s see how this works by reordering the fields on the edit form. Replace the admin.site.

register (Question) line with:

66 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Listing 49: polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin) :
fields = ["pub_date", "question_text"]

admin.site.register(Question, QuestionAdmin)

You'll follow this pattern — create a model admin class, then pass it as the second argument to admin.site.

register () —any time you need to change the admin options for a model.

This particular change above makes the “Publication date” come before the “Question” field:

Change guestion
What's up?

Date published:

Date: 2024-08-02 Today ﬁ
Time: | 10:07:18 Now | ()
Question text: What's up?

This isn’t impressive with only two fields, but for admin forms with dozens of fields, choosing an intuitive

order is an important usability detail.

And speaking of forms with dozens of fields, you might want to split the form up into fieldsets:

Listing 50: polls/admin.py

from django.contrib import admin

(continues on next page)

2.9. Writing your first Django app, part 7 67

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

from .models import Question

class QuestionAdmin(admin.ModelAdmin) :
fieldsets = [
(None, {"fields": ["question_text"l}),
("Date information", {"fields": ["pub_date"]}),

admin.site.register(Question, QuestionAdmin)

The first element of each tuple in fieldsets is the title of the fieldset. Here’s what our form looks like now:

Change guestion
What's up?

Question text: What's up?

Date information

Date published:
P Date: 2024-08-02 Today |)

Time: | 10:07:18 Now | @)

2.9.2 Adding related objects

OK, we have our Question admin page, but a Question has multiple Choices, and the admin page doesn’t

display choices.
Yet.

There are two ways to solve this problem. The first is to register Choice with the admin just as we did with

68 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Question:

Listing 51: polls/admin.py

from django.contrib import admin

from .models import Choice, Question

admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form looks like this:

Add choice

Question: 0 | " +

Choice text:

Votes: 0

In that form, the “Question” field is a select box containing every question in the database. Django knows
that a ForeignKey should be represented in the admin as a <select> box. In our case, only one question

exists at this point.

Also note the “Add another question” link next to “Question.” Every object with a ForeignKey relationship
to another gets this for free. When you click “Add another question”, you’ll get a popup window with the
“Add question” form. If you add a question in that window and click “Save”, Django will save the question

to the database and dynamically add it as the selected choice on the “Add choice” form you're looking at.

But, really, this is an inefficient way of adding Choice objects to the system. 1t’d be better if you could add

a bunch of Choices directly when you create the Question object. Let’s make that happen.

Remove the register () call for the Choice model. Then, edit the Question registration code to read:

2.9. Writing your first Django app, part 7 69

Django Documentation, Release 5.2.7.dev20250917080137

Listing 52: polls/admin.py

from django.contrib import admin

from .models import Choice, Question

class ChoiceInline(admin.StackedInline):
model = Choice

extra = 3

class QuestionAdmin(admin.ModelAdmin) :
fieldsets = [
(None, {"fields": ["question_text"l}),

("Date information", {"fields": ["pub_date"], "classes":

]

inlines = [ChoiceInline]

admin.site.register(Question, QuestionAdmin)

["collapse"]l}),

This tells Django: “Choice objects are edited on the Question admin page. By default, provide enough fields

for 3 choices.”

Load the “Add question” page to see how that looks:

70

Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Add question

Question text:

» Date information

CHOICES

Choice: #1 Q

Choice text:

Votes:] =

Choice: #2 Q

Choice text:

Votes: 0 o

Choice: #3 Q

Choice text:

Votes: o =

=+ Add another Choice

Save and add another ave and continue editing

It works like this: There are three slots for related Choices — as specified by extra — and each time you come

back to the “Change” page for an already-created object, you get another three extra slots.

At the end of the three current slots you will find an “Add another Choice” link. If you click on it, a new slot
will be added. If you want to remove the added slot, you can click on the X to the top right of the added slot.

This image shows an added slot:

2.9. Writing your first Django app, part 7 71

Django Documentation, Release 5.2.7.dev20250917080137

CHOICES

Choice: #1 [x]

Choice text:

Votes: 0

L

Choice: #2 [%]

Choice text:

Votes: 0

L

Choice: #3 Q

Choice text:

Votes: 0

L

Choice: #4 [x]

Choice text:

Votes: 0

L]

=+ Add another Choice

One small problem, though. It takes a lot of screen space to display all the fields for entering related Choice
objects. For that reason, Django offers a tabular way of displaying inline related objects. To use it, change

the ChoiceInline declaration to read:

72 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Listing 53: polls/admin.py

class ChoiceInline(admin.TabularInline):

With that TabularInline (instead of StackedInline), the related objects are displayed in a more compact,
table-based format:

CHOICES

CHOICE TEXT VOTES DELETE?
0 = o
W
0 e O
W
0 = o
W

+ Add another Choice

Note that there is an extra “Delete?” column that allows removing rows added using the “Add another

Choice” button and rows that have already been saved.

2.9.3 Customize the admin change list

Now that the Question admin page is looking good, let’s make some tweaks to the “change list” page — the

one that displays all the questions in the system.

Here’s what it looks like at this point:

Select question to change

Action: |——— v || Go | 0of1 selected

O ouestion

O what's up?

1 guestion

By default, Django displays the str () of each object. But sometimes it’d be more helpful if we could display
individual fields. To do that, use the 1ist_display admin option, which is a list of field names to display, as

2.9. Writing your first Django app, part 7 73

Django Documentation, Release 5.2.7.dev20250917080137

columns, on the change list page for the object:

Listing 54: polls/admin.py

class QuestionAdmin(admin.ModelAdmin) :
...

list_display = ["question_text", "pub_date"]

For good measure, let’s also include the was_published_recently () method from Tutorial 2:

Listing 55: polls/admin.py

class QuestionAdmin(admin.ModelAdmin) :
...
list_display = ["question_text", "pub_date", "was_published_recently"]

Now the question change list page looks like this:

Select question to change

Action: | - v || Go | Dof 1 selected
O quesTion TEXT DATE PUBLISHED WAS PUBLISHED RECENTLY
D What's up? Aug. 2, 2024, 10:07 a.m. True
1 question
You can click on the column headers to sort by those values — except in the case of the

was_published_recently header, because sorting by the output of an arbitrary method is not supported.
Also note that the column header for was_published_recently is, by default, the name of the method (with

underscores replaced with spaces), and that each line contains the string representation of the output.

You can improve that by using the display () decorator on that method (extending the polls/models.py

file that was created in Tutorial 2), as follows:

Listing 56: polls/models.py

from django.contrib import admin

class Question(models.Model):
...

(continues on next page)

74 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
@admin.display(
boolean=True,
ordering="pub_date",

description="Published recently?",

def was_published_recently(self):
now = timezone.now()

return now - datetime.timedelta(days=1) <= self.pub_date <= now

For more information on the properties configurable via the decorator, see 1ist_display.

Edit your polls/admin.py file again and add an improvement to the Question change list page: filters using
the 1ist_filter. Add the following line to QuestionAdmin:

list_filter = ["pub_date"]

That adds a “Filter” sidebar that lets people filter the change list by the pub_date field:

Select question to change
Action: | - v || Go | 0of 1selected LI

@ Show counts

[0 oQuESTION TEXT DATE PUBLISHED PUBLISHED RECENTLY?
O what'sup? Aug. 2, 2024, 10:07 a.m. ® + By date published
. . Any date
question Today
Past 7 days
This month
This year

The type of filter displayed depends on the type of field you're filtering on. Because pub_date is a
DateTimeField, Django knows to give appropriate filter options: “Any date”, “Today”, “Past 7 days”, “This

month”, “This year”.

This is shaping up well. Let’s add some search capability:

search_fields = ["question_text"]

That adds a search box at the top of the change list. When somebody enters search terms, Django will search
the question_text field. You can use as many fields as you’d like — although because it uses a LIKE query
behind the scenes, limiting the number of search fields to a reasonable number will make it easier for your

database to do the search.

Now’s also a good time to note that change lists give you free pagination. The default is to dis-

play 100 items per page. Change list pagination, search bozes, filters, date-hierarchies, and

2.9. Writing your first Django app, part 7 75

Django Documentation, Release 5.2.7.dev20250917080137

column-header-ordering all work together like you think they should.

2.9.4 Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is ridiculous. It’s just placeholder

text.

You can change it, though, using Django’s template system. The Django admin is powered by Django itself,

and its interfaces use Django’s own template system.

Customizing your project’s templates

Create a templates directory in your djangotutorial directory. Templates can live anywhere on your
filesystem that Django can access. (Django runs as whatever user your server runs.) However, keeping your

templates within the project is a good convention to follow.

Open your settings file (mysite/settings.py, remember) and add a DIRS option in the TEMPLATES setting:

Listing 57: mysite/settings.py

TEMPLATES = [
{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [BASE_DIR / "templates"],
"APP_DIRS": True,
"OPTIONS": {

"context_processors": [
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",

1,

¥,

DIRS is a list of filesystem directories to check when loading Django templates; it’s a search path.

© Organizing templates

Just like the static files, we could have all our templates together, in one big templates directory, and it
would work perfectly well. However, templates that belong to a particular application should be placed

in that application’s template directory (e.g. polls/templates) rather than the project’s (templates).

We'll discuss in more detail in the reusable apps tutorial why we do this.

76 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Now create a directory called admin inside templates, and copy the template admin/base_site.
html from within the default Django admin template directory in the source code of Django itself

(django/contrib/admin/templates) into that directory.

© Where are the Django source files?

If you have difficulty finding where the Django source files are located on your system, run the following

command:

$ python -c "import django; print(django.__path__)"

Then, edit the file and replace {{ site_header|default:_('Django administration') }} (including the

curly braces) with your own site’s name as you see fit. You should end up with a section of code like:

block branding
<div id="site-name'">Polls Administration</div>
if user.is_anonymous
include "admin/color_theme_toggle.html"
endif
endblock

We use this approach to teach you how to override templates. In an actual project, you would probably
use the django. contrib. admin. AdminSite. site_header attribute to more easily make this particular cus-

tomization.

This template file contains lots of text like {%, block branding %} and {{ title }}. The {} and {{ tagsare
part of Django’s template language. When Django renders admin/base_site.html, this template language
will be evaluated to produce the final HTML page, just like we saw in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To override a template, do the same
thing you did with base_site.html — copy it from the default directory into your custom directory, and

make changes.

Customizing your application’s templates

Astute readers will ask: But if DIRS was empty by default, how was Django finding the default admin tem-
plates? The answer is that, since APP_DIRS is set to True, Django automatically looks for a templates/ sub-
directory within each application package, for use as a fallback (don’t forget that django.contrib.admin is

an application).

Our poll application is not very complex and doesn’t need custom admin templates. But if it grew more
sophisticated and required modification of Django’s standard admin templates for some of its functionality,
it would be more sensible to modify the application’s templates, rather than those in the project. That way,
you could include the polls application in any new project and be assured that it would find the custom

templates it needed.

2.9. Writing your first Django app, part 7 77

Django Documentation, Release 5.2.7.dev20250917080137

See the template loading documentation for more information about how Django finds its templates.

2.9.5 Customize the admin index page
On a similar note, you might want to customize the look and feel of the Django admin index page.

By default, it displays all the apps in INSTALLED_APPS that have been registered with the admin applica-
tion, in alphabetical order. You may want to make significant changes to the layout. After all, the index is

probably the most important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with admin/base_site.html in the previ-
ous section — copy it from the default directory to your custom template directory). Edit the file, and you’ll
see it uses a template variable called app_list. That variable contains every installed Django app. Instead

of using that, you can hard-code links to object-specific admin pages in whatever way you think is best.

When you're comfortable with the admin, read part 8 of this tutorial to learn how to use third-party packages.

2.10 Writing your first Django app, part 8

This tutorial begins where Tutorial 7 left off. We’ve built our web-poll application and will now look at third-
party packages. One of Django’s strengths is the rich ecosystem of third-party packages. They’re community

developed packages that can be used to quickly improve the feature set of an application.

This tutorial will show how to add Django Debug Toolbar, a commonly used third-party package. The Django
Debug Toolbar has ranked in the top three most used third-party packages in the Django Developers Survey

in recent years.

© Where to get help

If you're having trouble going through this tutorial, please head over to the Getting Help section of the
FAQ.

2.10.1 Installing Django Debug Toolbar

Django Debug Toolbar is a useful tool for debugging Django web applications. It’s a third-party package
that is maintained by the community organization Django Commons. The toolbar helps you understand
how your application functions and to identify problems. It does so by providing panels that provide debug

information about the current request and response.

To install a third-party application like the toolbar, you need to install the package by running the below

command within an activated virtual environment. This is similar to our earlier step to install Django.

$ python -m pip install django-debug-toolbar

78 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Third-party packages that integrate with Django need some post-installation setup to integrate them with
your project. Often you will need to add the package’s Django app to your INSTALLED_APPS setting. Some
packages need other changes, like additions to your URLconf (urls.py).

Django Debug Toolbar requires several setup steps. Follow them in its installation guide. The steps are not

duplicated in this tutorial, because as a third-party package, it may change separately to Django’s schedule.

Once installed, you should be able to see the DjDT “handle” on the right side of the browser window when
you browse to http://localhost:8000/admin/. Click it to open the debug toolbar and use the tools in each

panel. See the panels documentation page for more information on what the panels show.

2.10.2 Getting help from others

At some point you will run into a problem, for example the toolbar may not render. When this happens and

you’re unable to resolve the issue yourself, there are options available to you.

1. If the problem is with a specific package, check if there’s a troubleshooting guide or FAQ in the package’s
documentation. For example the Django Debug Toolbar has a Tips section that outlines troubleshoot-

ing options.
2. Search for similar issues on the package’s issue tracker. Django Debug Toolbar’s is on GitHub.
3. Consult the Django Forum.

4. Join the Django Discord server.

2.10.3 Installing other third-party packages

There are many more third-party packages, which you can find using the fantastic Django resource, Django

Packages.

It can be difficult to know what third-party packages you should use. This depends on your needs and goals.
Sometimes it’s fine to use a package that’s in its alpha state. Other times, you need to know it’s production
ready. Adam Johnson has a blog post that outlines a set of characteristics that qualifies a package as “well
maintained”. Django Packages shows data for some of these characteristics, such as when the package was

last updated.

As Adam points out in his post, when the answer to one of the questions is “no”, that’s an opportunity to

contribute.

2.10.4 What's next?

The beginner tutorial ends here. In the meantime, you might want to check out some pointers on where to

go from here.

If you are familiar with Python packaging and interested in learning how to turn polls into a “reusable app”,

check out Advanced tutorial: How to write reusable apps.

2.10. Writing your first Django app, part 8 79

Django Documentation, Release 5.2.7.dev20250917080137

2.11 Advanced tutorial: How to write reusable apps

This advanced tutorial begins where Tutorial 8 left off. We’ll be turning our web-poll into a standalone

Python package you can reuse in new projects and share with other people.

If you haven’t recently completed Tutorials 1-8, we encourage you to review these so that your example

project matches the one described below.

2.11.1 Reusability matters

It’s a lot of work to design, build, test and maintain a web application. Many Python and Django projects

share common problems. Wouldn’t it be great if we could save some of this repeated work?

Reusability is the way of life in Python. The Python Package Index (PyPI) has a vast range of packages
you can use in your own Python programs. Check out Django Packages for existing reusable apps you could
incorporate in your project. Django itself is also a normal Python package. This means that you can take
existing Python packages or Django apps and compose them into your own web project. You only need to

write the parts that make your project unique.

Let’s say you were starting a new project that needed a polls app like the one we’ve been working on. How
do you make this app reusable? Luckily, you're well on the way already. In Tutorial 1, we saw how we could
decouple polls from the project-level URLconf using an include. In this tutorial, we’ll take further steps to

make the app easy to use in new projects and ready to publish for others to install and use.

© Package? App?

A Python package provides a way of grouping related Python code for easy reuse. A package contains

one or more files of Python code (also known as “modules”).

A package can be imported with import foo.bar or from foo import bar. For a directory (like polls)

to form a package, it must contain a special file __init__.py, even if this file is empty.

A Django application is a Python package that is specifically intended for use in a Django project. An
application may use common Django conventions, such as having models, tests, urls, and views sub-

modules.

Later on we use the term packaging to describe the process of making a Python package easy for others

to install. It can be a little confusing, we know.

2.11.2 Your project and your reusable app

After the previous tutorials, our project should look like this:

djangotutorial/

manage . py

(continues on next page)

80 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
mysite/
__init__.py
settings.py
urls.py
asgi.py
wsgi.py
polls/
__init__.py
admin.py
apps.py
migrations/
__init__.py
0001_initial.py
models.py
static/
polls/
images/
background.png
style.css
templates/
polls/
detail.html
index.html
results.html
tests.py
urls.py
views.py
templates/
admin/

base_site.html

You created djangotutorial/templates in Tutorial 7, and polls/templates in Tutorial 3. Now perhaps
it is clearer why we chose to have separate template directories for the project and application: everything
that is part of the polls application is in polls. It makes the application self-contained and easier to drop

into a new project.

The polls directory could now be copied into a new Django project and immediately reused. It’s not quite

ready to be published though. For that, we need to package the app to make it easy for others to install.

2.11. Advanced tutorial: How to write reusable apps 81

Django Documentation, Release 5.2.7.dev20250917080137

2.11.3 Installing some prerequisites

The current state of Python packaging is a bit muddled with various tools. For this tutorial, we're going
to use setuptools to build our package. It’s the recommended packaging tool (merged with the distribute
fork). We’ll also be using pip to install and uninstall it. You should install these two packages now. If you

need help, you can refer to how to install Django with pip. You can install setuptools the same way.

2.11.4 Packaging your app

Python packaging refers to preparing your app in a specific format that can be easily installed and used.

Django itself is packaged very much like this. For a small app like polls, this process isn’t too difficult.

1. First, create a parent directory for the package, outside of your Django project. Call this directory

django-polls.

© Choosing a name for your app

When choosing a name for your package, check PyPI to avoid naming conflicts with existing pack-
ages. We recommend using a django- prefix for package names, to identify your package as
specific to Django, and a corresponding django_ prefix for your module name. For example, the

django-ratelimit package contains the django_ratelimit module.

Application labels (that is, the final part of the dotted path to application packages) must be unique
in INSTALLED_APPS. Avoid using the same label as any of the Django contrib packages, for example

auth, admin, or messages.

2. Move the polls directory into django-polls directory, and rename it to django_polls.

3. Editdjango_polls/apps.py so that name refers to the new module name and add label to give a short

name for the app:

Listing 58: django-polls/django_polls/apps.py

from django.apps import AppConfig

class PollsConfig(AppConfig):
default_auto_field = "django.db.models.BigAutoField"
name = "django_polls"

label = "polls"

.

4. Create a file django-polls/README.rst with the following contents:

82 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

Listing 59: django-polls/README.rst

django-polls is a Django app to conduct web-based polls. For each

question, visitors can choose between a fixed number of answers.

Detailed documentation is in the "docs" directory.

1. Add "polls" to your INSTALLED_APPS setting like this::

INSTALLED_APPS = [

2. Include the polls URLconf in your project urls.py like this::

path("polls/", include("django_polls.urls")),

3. Run to create the models.

4. Start the development server and visit the admin to create a poll.

5. Visit the URL to participate in the poll.

5. Create a django-polls/LICENSE file. Choosing a license is beyond the scope of this tutorial, but suffice
it to say that code released publicly without a license is useless. Django and many Django-compatible
apps are distributed under the BSD license; however, you're free to pick your own license. Just be aware

that your licensing choice will affect who is able to use your code.

6. Next we’ll create the pyproject.toml file which details how to build and install the app. A full expla-
nation of this file is beyond the scope of this tutorial, but the Python Packaging User Guide has a good
explanation. Create the django-polls/pyproject.toml file with the following contents:

2.11. Advanced tutorial: How to write reusable apps 83

Django Documentation, Release 5.2.7.dev20250917080137

Listing 60: django-polls/pyproject.toml

r

[build-system]
requires = ["setuptools>=69.3"]

build-backend = "setuptools.build_meta"

[project]
name = "django-polls"
version = "O.1"

dependencies = [
"django>=X.Y", # Replace "X.Y" as appropriate
]

readme = "README.rst"
requires-python = ">= 3.10"

authors = [

"Intended Audience :: Developers",

"License :: OSI Approved :: BSD License",
"Operating System :: 0S Independent",
"Programming Language :: Python",

"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.12",

3
"Programming Language :: Python :: 3.11",

3

3.13",

"Programming Language :: Python ::

"Topic :: Internet :: WWW/HTTP",

[project.urls]

Homepage = "https://www.example.com/"

description = "A Django app to conduct web-based polls."

{name = "Your Name", email = "yourname@example.com"},
]
classifiers = [

"Environment :: Web Environment",

"Framework :: Django",

"Topic :: Internet :: WWW/HTTP :: Dynamic Content",

"Framework :: Django :: X.Y", # Replace "X.Y" as appropriate

7. Many common files and Python modules and packages are included in the package by default. To

include additional files, we’ll need to create a MANIFEST. in file. To include the templates and static

84

Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

files, create a file django-polls/MANIFEST. in with the following contents:

Listing 61: django-polls/MANIFEST.in

recursive-include django_polls/static *

recursive-include django_polls/templates *

8. It’s optional, but recommended, to include detailed documentation with your app. Create an empty

directory django-polls/docs for future documentation.

Note that the docs directory won’t be included in your package unless you add some files to it. Many

Django apps also provide their documentation online through sites like readthedocs.org.

Many Python projects, including Django and Python itself, use Sphinx to build their documentation.
If you choose to use Sphinx you can link back to the Django documentation by configuring Intersphinx

and including a value for Django in your project’s intersphinx_mapping value:

-

intersphinx_mapping = {

"django": (
"https://docs.djangoproject.com/en/stable/",
None,

),

With that in place, you can then cross-link to specific entries, in the same way as in the Django docs,

”

such as “:attr: django.test.TransactionTestCase.databases ™.

9. Check that the build package isinstalled (python -m pip install build)and try building your pack-
age by running python -m build inside django-polls. This creates a directory called dist and builds
your new package into source and binary formats, django_polls-0.1.tar.gz and django_polls-0.

1-py3-none-any.whl.

For more information on packaging, see Python’s Tutorial on Packaging and Distributing Projects.

2.11.5 Using your own package

Since we moved the polls directory out of the project, it’s no longer working. We’ll now fix this by installing

our new django-polls package.

O Installing as a user library

The following steps install django-polls as a user library. Per-user installs have a lot of advantages over
installing the package system-wide, such as being usable on systems where you don’t have administrator

access as well as preventing the package from affecting system services and other users of the machine.

2.11. Advanced tutorial: How to write reusable apps 85

Django Documentation, Release 5.2.7.dev20250917080137

Note that per-user installations can still affect the behavior of system tools that run as that user, so using
a virtual environment is a more robust solution (see below).

1. To install the package, use pip (you already installed it, right?):

[python -m pip install --user django-polls/dist/django_polls-0.1.tar.gz ’

2. Update mysite/settings.py to point to the new module name:

INSTALLED_APPS = [
"django_polls.apps.PollsConfig",

°

3. Update mysite/urls.py to point to the new module name:

urlpatterns = [

path("polls/", include("django_polls.urls")),

L)

4. Run the development server to confirm the project continues to work.

2.11.6 Publishing your app

Now that we’ve packaged and tested django-polls, it’s ready to share with the world! If this wasn’t just an

example, you could now:
¢ Email the package to a friend.
¢ Upload the package on your website.

e Post the package on a public repository, such as the Python Package Index (PyPI). packag-

ing.python.org has a good tutorial for doing this.

2.11.7 Installing Python packages with a virtual environment
Earlier, we installed django-polls as a user library. This has some disadvantages:
¢ Modifying the user libraries can affect other Python software on your system.
¢ You won’t be able to run multiple versions of this package (or others with the same name).

Typically, these situations only arise once you’re maintaining several Django projects. When they do, the
best solution is to use venv. This tool allows you to maintain multiple isolated Python environments, each

with its own copy of the libraries and package namespace.

86 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

2.12 What to read next

So you’ve read all the introductory material and have decided you’d like to keep using Django. We've only
just scratched the surface with this intro (in fact, if you’ve read every single word, you’ve read about 5% of

the overall documentation).
So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should know enough to start a project
of your own and start fooling around. As you need to learn new tricks, come back to the documentation.

There’s also a bigger Django ecosystem out there for you to explore that the community has created.

We've put a lot of effort into making Django’s documentation useful, clear and as complete as possible. The
rest of this document explains more about how the documentation works so that you can get the most out
of it.

(Yes, this is documentation about documentation. Rest assured we have no plans to write a document about

how to read the document about documentation.)

2.12.1 Finding documentation

Django’s got a lot of documentation — almost 450,000 words and counting — so finding what you need can
sometimes be tricky. A good place to start is the genindex. We also recommend using the builtin search

feature.

Or you can just browse around!

2.12.2 How the documentation is organized
Django’s main documentation is broken up into “chunks” designed to fill different needs:

e The introductory material is designed for people new to Django — or to web development in general. It
doesn’t cover anything in depth, but instead gives a high-level overview of how developing in Django

“feels”.

e The topic guides, on the other hand, dive deep into individual parts of Django. There are complete

guides to Django’s model system, template engine, forms framework, and much more.

This is probably where you’ll want to spend most of your time; if you work your way through these

guides you should come out knowing pretty much everything there is to know about Django.

e Web development is often broad, not deep — problems span many domains. We’ve written a set of
how-to guides that answer common “How do I...?” questions. Here you’ll find information about

generating PDFs with Django, writing custom template tags, and more.
Answers to really common questions can also be found in the FAQ.

¢ The guides and how-to’s don’t cover every single class, function, and method available in Django —

that would be overwhelming when you’re trying to learn. Instead, details about individual classes,

2.12. What to read next 87

Django Documentation, Release 5.2.7.dev20250917080137

functions, methods, and modules are kept in the reference. This is where you’ll turn to find the details

of a particular function or whatever you need.

o If you are interested in deploying a project for public use, our docs have several guides for various

deployment setups as well as a deployment checklist for some things you’ll need to think about.

¢ Finally, there’s some “specialized” documentation not usually relevant to most developers. This in-
cludes the release notes and internals documentation for those who want to add code to Django itself,

and a few other things that don’t fit elsewhere.

2.12.3 How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our documentation is consistently

improving. We improve documentation for several reasons:
¢ To make content fixes, such as grammar/typo corrections.
¢ To add information and/or examples to existing sections that need to be expanded.

¢ To document Django features that aren’t yet documented. (The list of such features is shrinking but

exists nonetheless.)

¢ To add documentation for new features as new features get added, or as Django APIs or behaviors

change.

Django’s documentation is kept in the same source control system as its code. It lives in the docs directory of

our Git repository. Each document online is a separate text file in the repository.

2.12.4 Where to get it

You can read Django documentation in several ways. They are, in order of preference:

On the web

The most recent version of the Django documentation lives at https://docs.djangoproject.com/en/dev/. These
HTML pages are generated automatically from the text files in source control. That means they reflect the
“latest and greatest” in Django — they include the very latest corrections and additions, and they discuss
the latest Django features, which may only be available to users of the Django development version. (See

Differences between versions below.)

We encourage you to help improve the docs by submitting changes, corrections and suggestions in the ticket
system. The Django developers actively monitor the ticket system and use your feedback to improve the

documentation for everybody.

Note, however, that tickets should explicitly relate to the documentation, rather than asking broad tech-
support questions. If you need help with your particular Django setup, try the Django Forum or the Django

Discord server instead.

88 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

In plain text
For offline reading, or just for convenience, you can read the Django documentation in plain text.

If you’re using an official release of Django, the zipped package (tarball) of the code includes a docs/ directory,

which contains all the documentation for that release.

If you're using the development version of Django (aka the main branch), the docs/ directory contains all of

the documentation. You can update your Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the Unix grep utility to search
for a phrase in all of the documentation. For example, this will show you each mention of the phrase

“max_length” in any Django document:

$ grep -r max_length /path/to/django/docs/

As HTML, locally
You can get a local copy of the HTML documentation following a few steps:

¢ Django’s documentation uses a system called Sphinx to convert from plain text to HTML. You’'ll need

to install Sphinx by either downloading and installing the package from the Sphinx website, or with
pip:

[$ python -m pip install Sphinx

¢ Then, use the included Makefile to turn the documentation into HTML:

$ path/to/django/docs
$ make html

You'll need GNU Make installed for this.

If you're on Windows you can alternatively use the included batch file:

cd path\to\django\docs
make.bat html

¢ The HTML documentation will be placed in docs/_build/html.

2.12.5 Differences between versions

The text documentation in the main branch of the Git repository contains the “latest and greatest” changes
and additions. These changes include documentation of new features targeted for Django’s next feature
release. For that reason, it’s worth pointing out our policy to highlight recent changes and additions to

Django.

We follow this policy:

2.12. What to read next 89

Django Documentation, Release 5.2.7.dev20250917080137

e The development documentation at https://docs.djangoproject.com/en/dev/ is from the main branch.
These docs correspond to the latest feature release, plus whatever features have been added/changed

in the framework since then.

¢ As we add features to Django’s development version, we update the documentation in the same Git

commit transaction.

e To distinguish feature changes/additions in the docs, we use the phrase: “New in Django Development
version” for the version of Django that hasn’t been released yet, or “New in version X.Y” for released

versions.

¢ Documentation fixes and improvements may be backported to the last release branch, at the discretion
of the merger, however, once a version of Django is no longer supported, that version of the docs won’t

get any further updates.

¢ The main documentation web page includes links to documentation for previous versions. Be sure you

are using the version of the docs corresponding to the version of Django you are using!

2.13 Writing your first contribution for Django

2.13.1 Introduction

Interested in giving back to the community a little? Maybe you've found a bug in Django that you’d like to
see fixed, or maybe there’s a small feature you want added (but remember that proposals for new features

should follow the process for suggesting new features).

Contributing back to Django itself is the best way to see your own concerns addressed. This may seem
daunting at first, but it’s a well-traveled path with documentation, tooling, and a community to support

you. We'll walk you through the entire process, so you can learn by example.

Who's this tutorial for?

> See also

If you are looking for a reference on the details of making code contributions, see the Contributing code

documentation.

For this tutorial, we expect that you have at least a basic understanding of how Django works. This means
you should be comfortable going through the existing tutorials on writing your first Django app. In addition,
you should have a good understanding of Python itself. But if you don’t, Dive Into Python is a fantastic (and

free) online book for beginning Python programmers.

Those of you who are unfamiliar with version control systems and Trac will find that this tutorial and its
links include just enough information to get started. However, you’ll probably want to read some more about

these different tools if you plan on contributing to Django regularly.

90 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

For the most part though, this tutorial tries to explain as much as possible, so that it can be of use to the

widest audience.

©® Where to get help

If you're having trouble going through this tutorial, please post a message on the Django Forum or drop

by the Django Discord server to chat with other Django users who might be able to help.

What does this tutorial cover?

We'll be walking you through contributing to Django for the first time. By the end of this tutorial, you should
have a basic understanding of both the tools and the processes involved. Specifically, we’ll be covering the

following:
¢ Installing Git.
¢ Downloading a copy of Django’s development version.
e Running Django’s test suite.
o Writing a test for your changes.
e Writing the code for your changes.
¢ Testing your changes.
¢ Submitting a pull request.
¢ Where to look for more information.

Once you’re done with the tutorial, you can look through the rest of Django’s documentation on contributing.
It contains lots of great information and is a must read for anyone who’d like to become a regular contributor

to Django. If you've got questions, it’s probably got the answers.

© Python 3 required!

The current version of Django doesn’t support Python 2.7. Get Python 3 at Python’s download page or

with your operating system’s package manager.

© For Windows users

See Install Python on Windows docs for additional guidance.

2.13. Writing your first contribution for Django 91

Django Documentation, Release 5.2.7.dev20250917080137

2.13.2 Code of Conduct

As a contributor, you can help us keep the Django community open and inclusive. Please read and follow

our Code of Conduct.

2.13.3 Installing Git

For this tutorial, youw'll need Git installed to download the current development version of Django and to

generate a branch for the changes you make.

To check whether or not you have Git installed, enter git into the command line. If you get messages saying

that this command could not be found, you’ll have to download and install it, see Git’s download page.

If you’re not that familiar with Git, you can always find out more about its commands (once it’s installed)

by typing git help into the command line.

2.13.4 Getting a copy of Django’s development version

The first step to contributing to Django is to get a copy of the source code. First, fork Django on GitHub.
Then, from the command line, use the cd command to navigate to the directory where you’ll want your local

copy of Django to live.

Download the Django source code repository using the following command:

$ git clone https://github.com/YourGitHubName/django.git

©® Low bandwidth connection?

You can add the --depth 1 argument to git clone to skip downloading all of Django’s commit history,
which reduces data transfer from ~250 MB to ~70 MB.

Now that you have a local copy of Django, you can install it just like you would install any package using
pip. The most convenient way to do so is by using a virtual environment, which is a feature built into Python
that allows you to keep a separate directory of installed packages for each of your projects so that they don’t

interfere with each other.

It’s a good idea to keep all your virtual environments in one place, for example in .virtualenvs/ in your

home directory.

Create a new virtual environment by running:

$ python3 -m venv ~/.virtualenvs/djangodev

The path is where the new environment will be saved on your computer.

The final step in setting up your virtual environment is to activate it:

92 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

‘$ ~/.virtualenvs/djangodev/bin/activate

If the source command is not available, you can try using a dot instead:

‘$. ~/.virtualenvs/djangodev/bin/activate

You have to activate the virtual environment whenever you open a new terminal window.

©® For Windows users

To activate your virtual environment on Windows, run:

...\> 7HOMEPATHY\ .virtualenvs\djangodev\Scripts\activate.bat

The name of the currently activated virtual environment is displayed on the command line to help you keep
track of which one you are using. Anything you install through pip while this name is displayed will be

installed in that virtual environment, isolated from other environments and system-wide packages.

Go ahead and install the previously cloned copy of Django:

$ python -m pip install -e /path/to/your/local/clone/django/

The installed version of Django is now pointing at your local copy by installing in editable mode. You will

immediately see any changes you make to it, which is of great help when testing your first contribution.

2.13.5 Running Django’s test suite for the first time

When contributing to Django it’s very important that your code changes don’t introduce bugs into other areas
of Django. One way to check that Django still works after you make your changes is by running Django’s
test suite. If all the tests still pass, then you can be reasonably sure that your changes work and haven’t
broken other parts of Django. If you’ve never run Django’s test suite before, it’s a good idea to run it once

beforehand to get familiar with its output.

Before running the test suite, enter the Django tests/ directory using the cd tests command, and install

test dependencies by running;:

$ python -m pip install -r requirements/py3.txt

If you encounter an error during the installation, your system might be missing a dependency for one or
more of the Python packages. Consult the failing package’s documentation or search the web with the error

message that you encounter.

Now we are ready to run the test suite:

2.13. Writing your first contribution for Django 93

Django Documentation, Release 5.2.7.dev20250917080137

$./runtests.py

Now sit back and relax. Django’s entire test suite has thousands of tests, and it takes at least a few minutes

to run, depending on the speed of your computer.

While Django’s test suite is running, you’ll see a stream of characters representing the status of each test as
it completes. E indicates that an error was raised during a test, and F indicates that a test’s assertions failed.
Both of these are considered to be test failures. Meanwhile, x and s indicate expected failures and skipped

tests, respectively. Dots indicate passing tests.

Skipped tests are typically due to missing external libraries required to run the test; see Running all the tests
for a list of dependencies and be sure to install any for tests related to the changes you are making (we won’t
need any for this tutorial). Some tests are specific to a particular database backend and will be skipped if not
testing with that backend. SQLite is the database backend for the default settings. To run the tests using a

different backend, see Using another settings module.

Once the tests complete, you should be greeted with a message informing you whether the test suite passed
or failed. Since you haven’t yet made any changes to Django’s code, the entire test suite should pass. If you
get failures or errors make sure you've followed all of the previous steps properly. See Running the unit tests

for more information.

Note that the latest Django “main” branch may not always be stable. When developing against “main”, you
can check Django’s continuous integration builds to determine if the failures are specific to your machine or
if they are also present in Django’s official builds. If you click to view a particular build, you can view the

“Configuration Matrix” which shows failures broken down by Python version and database backend.

O Note

For this tutorial and the ticket we’re working on, testing against SQLite is sufficient, however, it’s possible
(and sometimes necessary) to run the tests using a different database. When making UI changes, you will

need to run the Selenium tests.

2.13.6 Working on an approved new feature

For this tutorial, we’ll work on a “fake accepted ticket” as a case study. Here are the imaginary details:

O Ticket #99999 — Allow making toast

Django should provide a function django . shortcuts.make_toast () that returns 'toast'.

We'll now implement this feature and associated tests.

94 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

2.13.7 Creating a branch

Before making any changes, create a new branch for the ticket:

$ git checkout -b ticket_99999

You can choose any name that you want for the branch, “ticket 99999” is an example. All changes made in

this branch will be specific to the ticket and won’t affect the main copy of the code that we cloned earlier.

2.13.8 Writing some tests for your ticket

In most cases, for a contribution to be accepted into Django it has to include tests. For bug fix contributions,
this means writing a regression test to ensure that the bug is never reintroduced into Django later on. A
regression test should be written in such a way that it will fail while the bug still exists and pass once the bug
has been fixed. For contributions containing new features, you’ll need to include tests which ensure that the
new features are working correctly. They too should fail when the new feature is not present, and then pass

once it has been implemented.

A good way to do this is to write your new tests first, before making any changes to the code. This style of
development is called test-driven development and can be applied to both entire projects and single changes.
After writing your tests, you then run them to make sure that they do indeed fail (since you haven’t fixed
that bug or added that feature yet). If your new tests don’t fail, you’ll need to fix them so that they do. After
all, a regression test that passes regardless of whether a bug is present is not very helpful at preventing that

bug from reoccurring down the road.

Now for our hands-on example.

Writing a test for ticket #99999

In order to resolve this ticket, we’ll add a make_toast () function to the django.shortcuts module. First we

are going to write a test that tries to use the function and check that its output looks correct.

Navigate to Django’s tests/shortcuts/ folder and create a new file test_make_toast.py. Add the follow-

ing code:

from django.shortcuts import make_toast

from django.test import SimpleTestCase

class MakeToastTests(SimpleTestCase):
def test_make_toast()

.assertEqual (make_toast(), "toast')

This test checks that the make_toast () returns 'toast'.

2.13. Writing your first contribution for Django 95

Django Documentation, Release 5.2.7.dev20250917080137

© But this testing thing looks kinda hard. . .

If you’ve never had to deal with tests before, they can look a little hard to write at first glance. Fortunately,

testing is a very big subject in computer programming, so there’s lots of information out there:

o A good first look at writing tests for Django can be found in the documentation on Writing and

running tests.

¢ Dive Into Python (a free online book for beginning Python developers) includes a great introduction

to Unit Testing.

o After reading those, if you want something a little meatier to sink your teeth into, there’s always

the Python unittest documentation.

Running your new test

Since we haven’t made any modifications to django.shortcuts yet, our test should fail. Let’s run all the
tests in the shortcuts folder to make sure that’s really what happens. cd to the Django tests/ directory

and run:

‘$./runtests.py shortcuts

If the tests ran correctly, you should see one failure corresponding to the test method we added, with this

error:

‘ImportError: cannot import name 'make_toast' from 'django.shortcuts'

If all of the tests passed, then you’ll want to make sure that you added the new test shown above to the

appropriate folder and file name.

2.13.9 Writing the code for your ticket
Next we’ll be adding the make_toast () function.

Navigate to the django/ folder and open the shortcuts.py file. At the bottom, add:

def make_toast():

return "toast"

Now we need to make sure that the test we wrote earlier passes, so we can see whether the code we added is

working correctly. Again, navigate to the Django tests/ directory and run:

$./runtests.py shortcuts

Everything should pass. If it doesn’t, make sure you correctly added the function to the correct file.

96 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

2.13.10 Running Django’s test suite for the second time

Once you've verified that your changes and test are working correctly, it’s a good idea to run the entire
Django test suite to verify that your change hasn’t introduced any bugs into other areas of Django. While
successfully passing the entire test suite doesn’t guarantee your code is bug free, it does help identify many

bugs and regressions that might otherwise go unnoticed.

To run the entire Django test suite, cd into the Django tests/ directory and run:

$./runtests.py

2.13.11 Writing Documentation

This is a new feature, so it should be documented. Open the file docs/topics/http/shortcuts.txt and add
the following at the end of the file:

. function:: make_toast()

. versionadded:: 2.2

Returns =~ 'toast' .

Since this new feature will be in an upcoming release it is also added to the release notes for the next version of
Django. Open the release notes for the latest version in docs/releases/, which at time of writing is 2.2. txt.

Add a note under the “Minor Features” header:

* The new :func: django.shortcuts.make_toast™ function returns ~ 'toast' .

For more information on writing documentation, including an explanation of what the versionadded bit is
all about, see Writing documentation. That page also includes an explanation of how to build a copy of the

documentation locally, so you can preview the HTML that will be generated.

2.13.12 Previewing your changes

Now it’s time to review the changes made in the branch. To stage all the changes ready for commit, run:

$ git add --all

2.13. Writing your first contribution for Django 97

Django Documentation, Release 5.2.7.dev20250917080137

Then display the differences between your current copy of Django (with your changes) and the revision that

you initially checked out earlier in the tutorial with:

$ git diff --cached

Use the arrow keys to move up and down.

--- a/django/shortcuts.py
+++ b/django/shortcuts.py

Finally, fall back and assume it's a URL

return to
2
o
+def make_toast():

+ return 'toast'

--— a/docs/releases/2.2.txt

+++ b/docs/releases/2.2.txt

Minor features

+* The new :func: django.shortcuts.make_toast™ function returns

+

:mod: "django.contrib.admin”

--- a/docs/topics/http/shortcuts.txt
+++ b/docs/topics/http/shortcuts.txt

my_objects = list(MyModel.objects.filter (published=True))

if not my_objects:

'toast' " ".

(continues on next page)

98

Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
raise Http404("No MyModel matches the given query.")
o
+” “make_toast() "

o
+.. function:: make_toast()
o

+.. versionadded:: 2.2

o

+Returns "~ 'toast' ".
new file mode 100644

--- /dev/null
+++ b/tests/shortcuts/test_make_toast.py

+from django.shortcuts import make_toast
+from django.test import SimpleTestCase
+

+

+class MakeToastTests(SimpleTestCase):

+ def test_make_toast(self):

+ self.assertEqual (make_toast(), 'toast')

When you're done previewing the changes, hit the q key to return to the command line. If the diff looked

okay, it’s time to commit the changes.

2.13.13 Committing the changes

To commit the changes:

‘$ git commit

This opens up a text editor to type the commit message. Follow the commit message guidelines and write a

message like:

‘Fixed #99999 -- Added a shortcut function to make toast.

2.13. Writing your first contribution for Django 99

Django Documentation, Release 5.2.7.dev20250917080137

2.13.14 Pushing the commit and making a pull request

After committing the changes, send it to your fork on GitHub (substitute “ticket 99999” with the name of

your branch if it’s different):

$ git push origin ticket_99999

You can create a pull request by visiting the Django GitHub page. You’ll see your branch under “Your

recently pushed branches”. Click “Compare & pull request” next to it.

Please don’t do it for this tutorial, but on the next page that displays a preview of the changes, you would

click “Create pull request”.

2.13.15 Next steps

Congratulations, you’ve learned how to make a pull request to Django! Details of more advanced techniques

you may need are in Working with Git and GitHub.

Now you can put those skills to good use by helping to improve Django’s codebase.

More information for new contributors

Before you get too into contributing to Django, there’s a little more information on contributing that you

should probably take a look at:

¢ Youshould make sure to read Django’s documentation on claiming tickets and submitting pull requests.
It covers Trac etiquette, how to claim tickets for yourself, expected coding style (both for code and

docs), and many other important details.

e First time contributors should also read Django’s documentation for first time contributors. It has lots

of good advice for those of us who are new to helping out with Django.

o After those, if you're still hungry for more information about contributing, you can always browse
through the rest of Django’s documentation on contributing. It contains a ton of useful information

and should be your first source for answering any questions you might have.

Finding your first real ticket

Once you’'ve looked through some of that information, you’ll be ready to go out and find a ticket of your own
to contribute to. Pay special attention to tickets with the “easy pickings” criterion. These tickets are often
much simpler in nature and are great for first time contributors. Once you’re familiar with contributing to

Django, you can start working on more difficult and complicated tickets.

If you just want to get started already (and nobody would blame you!), try taking a look at the list of easy
tickets without a branch and the easy tickets that have branches which need improvement. If you're familiar
with writing tests, you can also look at the list of easy tickets that need tests. Remember to follow the
guidelines about claiming tickets that were mentioned in the link to Django’s documentation on claiming

tickets and submitting branches.

100 Chapter 2. Getting started

Django Documentation, Release 5.2.7.dev20250917080137

What’s next after creating a pull request?

After a ticket has a branch, it needs to be reviewed by a second set of eyes. After submitting a pull request,
update the ticket metadata by setting the flags on the ticket to say “has patch”, “doesn’t need tests”, etc,
so others can find it for review. Contributing doesn’t necessarily always mean writing code from scratch.

Reviewing open pull requests is also a very helpful contribution. See Triaging tickets for details.

¢ See also

If you're new to Python, you might want to start by getting an idea of what the language is like. Django is

100% Python, so if you’ve got minimal comfort with Python you’ll probably get a lot more out of Django.
If you're new to programming entirely, you might want to start with this list of Python resources for
non-programiers

If you already know a few other languages and want to get up to speed with Python quickly, we rec-
ommend referring the official Python documentation, which provides comprehensive and authoritative

information about the language, as well as links to other resources such as a list of books about Python.

2.13. Writing your first contribution for Django 101

Django Documentation, Release 5.2.7.dev20250917080137

102 Chapter 2. Getting started

CHAPTER

THREE

USING DJANGO

Introductions to all the key parts of Django you’ll need to know:

3.1 How to install Django

This document will get you up and running with Django.

3.1.1 Install Python

Django is a Python web framework. See What Python version can I use with Django? for details.

Get the latest version of Python at https://www.python.org/downloads/ or with your operating system’s pack-

age manager.

©® Python on Windows

If you are just starting with Django and using Windows, you may find How to install Django on Windows

useful.

3.1.2 Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section; Django includes a lightweight
web server you can use for testing, so you won’t need to set up Apache until you're ready to deploy Django

in production.

If you want to use Django on a production site, use Apache with mod wsgi. mod_wsgi operates in one of
two modes: embedded mode or daemon mode. In embedded mode, mod_wsgi is similar to mod_perl — it
embeds Python within Apache and loads Python code into memory when the server starts. Code stays in
memory throughout the life of an Apache process, which leads to significant performance gains over other
server arrangements. In daemon mode, mod wsgi spawns an independent daemon process that handles
requests. The daemon process can run as a different user than the web server, possibly leading to improved
security. The daemon process can be restarted without restarting the entire Apache web server, possibly

making refreshing your codebase more seamless. Consult the mod wsgi documentation to determine which

103

Django Documentation, Release 5.2.7.dev20250917080137

mode is right for your setup. Make sure you have Apache installed with the mod_wsgi module activated.

Django will work with any version of Apache that supports mod_wsgi.

See How to use Django with mod wsgi for information on how to configure mod wsgi once you have it

installed.

If you can’t use mod_wsgi for some reason, fear not: Django supports many other deployment options. One
is uWSGT; it works very well with nginx. Additionally, Django follows the WSGI spec (PEP 3333), which

allows it to run on a variety of server platforms.

3.1.3 Get your database running

If you plan to use Django’s database API functionality, you'll need to make sure a database server is run-
ning. Django supports many different database servers and is officially supported with PostgreSQL, Mari-
aDB, MySQL, Oracle and SQLite.

If you are developing a small project or something you don’t plan to deploy in a production environment,
SQLite is generally the best option as it doesn’t require running a separate server. However, SQLite has
many differences from other databases, so if you are working on something substantial, it’s recommended to

develop with the same database that you plan on using in production.

In addition to the officially supported databases, there are backends provided by 3rd parties that allow you

to use other databases with Django.

To use another database other than SQLite, you’ll need to make sure that the appropriate Python database

bindings are installed:

o If you're using PostgreSQL, you’ll need the psycopg or psycopg2 package. Refer to the PostgreSQL

notes for further details.

¢ If you're using MySQL or MariaDB, you’ll need a DB API driver like mysqlclient. See notes for the
MySQL backend for details.

e If you're using SQLite you might want to read the SQLite backend notes.

e If you're using Oracle, you’ll need to install oracledb, but please read the notes for the Oracle backend

for details regarding supported versions of both Oracle and oracledb.

e If you're using an unofficial 3rd party backend, please consult the documentation provided for any

additional requirements.

And ensure that the following keys in the 'default' item of the DATABASES dictionary match your database

connection settings:

e ENGINE — Either 'django.db.backends.sqlite3', 'django.db.backends.postgresql', 'django.

db.backends.mysql', or 'django.db.backends.oracle'. Other backends are also available.

e NVAME — The name of your database. If you're using SQLite, the database will be a file on your computer.
In that case, NAME should be the full absolute path, including the filename of that file. You don’t need to

104 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

create anything beforehand; the database file will be created automatically when needed. The default

value, BASE_DIR / 'db.sqlite3', will store the file in your project directory.

© For databases other than SQLite

If you are not using SQLite as your database, additional settings such as USER, PASSWORD, and HOST must

be added. For more details, see the reference documentation for DATABASES.

Also, make sure that you've created the database by this point. Do that with “CREATE DATABASE

database_name;” within your database’s interactive prompt.

If you plan to use Django’s manage .py migrate command to automatically create database tables for your
models (after first installing Django and creating a project), you’ll need to ensure that Django has permission
to create and alter tables in the database you’re using; if you plan to manually create the tables, you can
grant Django SELECT, INSERT, UPDATE and DELETE permissions. After creating a database user with these
permissions, you’ll specify the details in your project’s settings file, see DATABASES for details.

If you're using Django’s testing framework to test database queries, Django will need permission to create a

test database.

3.1.4 Install the Django code

Installation instructions are slightly different depending on whether you're installing a distribution-specific

package, downloading the latest official release, or fetching the latest development version.

Installing an official release with pip
This is the recommended way to install Django.

1. Install pip. The easiest is to use the standalone pip installer. If your distribution already has pip
installed, you might need to update it if it’s outdated. If it’s outdated, you’ll know because installation

won’t work.

2. Take a look at venv. This tool provides isolated Python environments, which are more practical than
installing packages systemwide. It also allows installing packages without administrator privileges.

The contributing tutorial walks through how to create a virtual environment.

3. After you've created and activated a virtual environment, enter the command:

$ python -m pip install Django

3.1. How to install Django 105

Django Documentation, Release 5.2.7.dev20250917080137

Installing a distribution-specific package

Check the distribution specific notes to see if your platform/distribution provides official Django pack-
ages/installers. Distribution-provided packages will typically allow for automatic installation of dependen-

cies and supported upgrade paths; however, these packages will rarely contain the latest release of Django.

Installing the development version

© Tracking Django development

If you decide to use the latest development version of Django, you’ll want to pay close attention to the
development timeline, and you’ll want to keep an eye on the release notes for the upcoming release. This
will help you stay on top of any new features you might want to use, as well as any changes you’ll need

to make to your code when updating your copy of Django. (For stable releases, any necessary changes

are documented in the release notes.)

If you'd like to be able to update your Django code occasionally with the latest bug fixes and improvements,

follow these instructions:

1. Make sure that you have Git installed and that you can run its commands from a shell. (Enter git

help at a shell prompt to test this.)

2. Check out Django’s main development branch like so:

[$ git clone https://github.com/django/django.git

This will create a directory django in your current directory.

3. Make sure that the Python interpreter can load Django’s code. The most convenient way to do this is
to use a virtual environment and pip. The contributing tutorial walks through how to create a virtual

environment.

4. After setting up and activating the virtual environment, run the following command:

$ python -m pip install -e django/

This will make Django’s code importable, and will also make the d jango-admin utility command avail-

able. In other words, you're all set!

When you want to update your copy of the Django source code, run the command git pull from within the

django directory. When you do this, Git will download any changes.

106 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

3.2 Models and databases

A model is the single, definitive source of information about your data. It contains the essential fields and

behaviors of the data you're storing. Generally, each model maps to a single database table.

3.2.1 Models

A model is the single, definitive source of information about your data. It contains the essential fields and

behaviors of the data you're storing. Generally, each model maps to a single database table.
The basics:

¢ Each model is a Python class that subclasses django. db.models.Model.

e Each attribute of the model represents a database field.

o With all of this, Django gives you an automatically-generated database-access API; see Making queries.

Quick example

This example model defines a Person, which has a first_name and last_name:

from django.db import models

class Person(models.Model) :
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is specified as a class attribute, and each

attribute maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (

"id" NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
"first name" (30) NOT NULL,
"last_name" (30) NOT NULL

)

Some technical notes:

e The name of the table, myapp_person, is automatically derived from some model metadata but can be

overridden. See Table names for more details.

¢ An id field is added automatically, but this behavior can be overridden. See Automatic primary key
fields.

3.2. Models and databases 107

Django Documentation, Release 5.2.7.dev20250917080137

e The CREATE TABLE SQL in this example is formatted using PostgreSQL syntax, but it’s worth noting
Django uses SQL tailored to the database backend specified in your settings file.

Using models

Once you have defined your models, you need to tell Django you're going to use those models. Do this by
editing your settings file and changing the INSTALLED APPS setting to add the name of the module that

contains your models. py.

For example, if the models for your application live in the module myapp .models (the package structure that

is created for an application by the manage.py startapp script), INSTALLED_APPS should read, in part:

INSTALLED_APPS = [

”myapp " s

When you add new apps to INSTALLED_APPS, be sure to run manage.py migrate, optionally making migra-

tions for them first with manage.py makemigrations.

Fields

The most important part of a model — and the only required part of a model - is the list of database fields
it defines. Fields are specified by class attributes. Be careful not to choose field names that conflict with the

models API like clean, save, or delete.

Example:

from django.db import models

class Musician(models.Model) :
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
instrument = models.CharField(max_length=100)

class Album(models.Model) :
artist = models.ForeignKey(Musician, on_delete=models.CASCADE)
name = models.CharField(max_length=100)
release_date = models.DateField()

num_stars = models.IntegerField()

108 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Field types
Each field in your model should be an instance of the appropriate Field class. Django uses the field class
types to determine a few things:
e The column type, which tells the database what kind of data to store (e.g. INTEGER, VARCHAR, TEXT).
e The default HTML widget to use when rendering a form field (e.g. <input type="text">, <select>).
¢ The minimal validation requirements, used in Django’s admin and in automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list in the model field reference.
You can easily write your own fields if Django’s built-in ones don’t do the trick; see How to create custom
model fields.

Field options

Each field takes a certain set of field-specific arguments (documented in the model field reference). For ex-
ample, CharField (and its subclasses) require a maz_ length argument which specifies the size of the VARCHAR
database field used to store the data.

There’s also a set of common arguments available to all field types. All are optional. They’re fully explained

in the reference, but here’s a quick summary of the most often-used ones:

null

If True, Django will store empty values as NULL in the database. Default is False.

blank
If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is purely database-related, whereas blank is validation-
related. If a field has blank=True, form validation will allow entry of an empty value. If a field has
blank=False, the field will be required.

choices
A sequence of 2-value tuples, a mapping, an enumeration type, or a callable (that expects no arguments
and returns any of the previous formats), to use as choices for this field. If this is given, the default form

widget will be a select box instead of the standard text field and will limit choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = [
("FR", "Freshman"),
("s0", "Sophomore"),
("JR", "Junior"),
("SR", "Senior"),
("GR", "Graduate"),

3.2. Models and databases 109

Django Documentation, Release 5.2.7.dev20250917080137

O Note

A new migration is created each time the order of choices changes.

The first element in each tuple is the value that will be stored in the database. The second element is

displayed by the field’s form widget.

Given a model instance, the display value for a field with choices can be accessed using the

get_FO0O0_display () method. For example:

-

from django.db import models

class Person(models.Model):

SHIRT_SIZES = {

I|SII 0 I|Smallll ,
"M": "Medium",
I|LII . I|Largell ,

}
name = models.CharField(max_length=60)

shirt_size = models.CharField(max_length=1, choices=SHIRT_SIZES)

>>> p = Person(name="Fred Flintstone", shirt_size="L")
>>> p.save()

>>> p.shirt_size

L

>>> p.get_shirt_size_display()

'Large’

You can also use enumeration classes to define choices in a concise way:

from django.db import models

class Runner(models.Model):
MedalType = models.TextChoices("MedalType", "GOLD SILVER BRONZE")
name = models.CharField(max_length=60)
medal = models.CharField(blank=True, choices=MedalType, max_length=10)

Further examples are available in the model field reference.

default
The default value for the field. This can be a value or a callable object. If callable it will be called every

110 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

time a new object is created.

db_default

The database-computed default value for the field. This can be a literal value or a database function.

If both db_default and Field. default are set, default will take precedence when creating instances
in Python code. db_default will still be set at the database level and will be used when inserting rows

outside of the ORM or when adding a new field in a migration.

help_text

Extra “help” text to be displayed with the form widget. It’s useful for documentation even if your field

isn’t used on a form.

primary_key
If True, this field is the primary key for the model.

If you don’t specify primary_key=True for any fields in your model, Django will automatically add a
field to hold the primary key, so you don’t need to set primary_key=True on any of your fields unless

you want to override the default primary-key behavior. For more, see Automatic primary key fields.

The primary key field is read-only. If you change the value of the primary key on an existing object

and then save it, a new object will be created alongside the old one. For example:

-

from django.db import models

class Fruit(models.Model):

name = models.CharField(max_length=100, primary_key=True)

>>> fruit = Fruit.objects.create(name="Apple")
>>> fruit.name = "Pear"

>>> fruit.save()

>>> Fruit.objects.values_list("name", flat=True)

<QuerySet ['Apple', 'Pear']>

unique

If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full details can be found in the

common model field option reference.

3.2. Models and databases 111

Django Documentation, Release 5.2.7.dev20250917080137

Automatic primary key fields

By default, Django gives each model an auto-incrementing primary key with the type specified per app in
AppConfig.default_auto_field or globally in the DEFAULT AUTO_FIELD setting. For example:

= models.BigAutoField(primary_key=True)

If you’d like to specify a custom primary key, specify primary_key=True on one of your fields. If Django sees

you’'ve explicitly set Field. primary_key, it won’t add the automatic id column.

Each model requires exactly one field to have primary_key=True (either explicitly declared or automatically
added).

Verbose field names

Each field type, except for Foreignkey, ManyToManyField and OneToOneField, takes an optional first posi-
tional argument — a verbose name. If the verbose name isn’t given, Django will automatically create it using

the field’s attribute name, converting underscores to spaces.

In this example, the verbose name is "person's first name":

‘first_name = models.CharField("person's first name", max_length=30)

In this example, the verbose name is "first name":

‘first_name = models.CharField(max_length=30)

ForeignKey, ManyToManyField and OneToOneField require the first argument to be a model class, so use the

verbose_name keyword argument:

poll = models.ForeignKey(

Poll,

on_delete=models.CASCADE,

verbose_name="the related poll",
)
sites = models.ManyToManyField(Site, verbose_name="list of sites")

models.OneToOneField(

place
Place,
on_delete=models.CASCADE,

verbose_name='"related place",

The convention is not to capitalize the first letter of the verbose_name. Django will automatically capitalize

the first letter where it needs to.

112 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Relationships

Clearly, the power of relational databases lies in relating tables to each other. Django offers ways to define

the three most common types of database relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships

To define a many-to-one relationship, use django.db.models.ForeignKey. You use it just like any other

Field type: by including it as a class attribute of your model.
ForeignKey requires a positional argument: the class to which the model is related.

For example, if a Car model has a Manufacturer — that is, a Manufacturer makes multiple cars but each Car

only has one Manufacturer — use the following definitions:

from django.db import models

class Manufacturer (models.Model) :

pass

class Car(models.Model):

manufacturer = models.ForeignKey(Manufacturer, on_delete=models.CASCADE)

You can also create recursive relationships (an object with a many-to-one relationship to itself) and relation-

ships to models not yet defined; see the model field reference for details.

It’s suggested, but not required, that the name of a ForeignKey field (manufacturer in the example above)

be the name of the model, lowercase. You can call the field whatever you want. For example:

class Car(models.Model):
company_that_makes_it = models.ForeignKey(
Manufacturer,

on_delete=models.CASCADE,

> See also

ForeignKey fields accept a number of extra arguments which are explained in the model field reference.

These options help define how the relationship should work; all are optional.

3.2. Models and databases 113

Django Documentation, Release 5.2.7.dev20250917080137

For details on accessing backwards-related objects, see the Following relationships backward example.

For sample code, see the Many-to-one relationship model example.

Many-to-many relationships

To define a many-to-many relationship, use ManyToManyField. You use it just like any other Field type: by

including it as a class attribute of your model.
ManyToManyField requires a positional argument: the class to which the model is related.

For example, if a Pizza has multiple Topping objects — that is, a Topping can be on multiple pizzas and each

Pizza has multiple toppings — here’s how you’d represent that:

from django.db import models

class Topping(models.Model) :
...

pass

class Pizza(models.Model):
...
toppings = models.ManyToManyField(Topping)

Aswith ForeignKey, you can also create recursive relationships (an object with a many-to-many relationship

to itself) and relationships to models not yet defined.

It’s suggested, but not required, that the name of a ManyToManyField (toppings in the example above) be a

plural describing the set of related model objects.

It doesn’t matter which model has the ManyToManyField, but you should only put it in one of the models —
not both.

Generally, ManyToManyField instances should go in the object that’s going to be edited on a form. In the
above example, toppings is in Pizza (rather than Topping having a pizzas ManyToManyField) because it’s
more natural to think about a pizza having toppings than a topping being on multiple pizzas. The way it’s

set up above, the Pizza form would let users select the toppings.

> See also

See the Many-to-many relationship model example for a full example.

ManyToManyField fields also accept a number of extra arguments which are explained in the model field

114 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

reference. These options help define how the relationship should work; all are optional.

Extra fields on many-to-many relationships

When you're only dealing with many-to-many relationships such as mixing and matching pizzas and top-
pings, a standard ManyToManyField is all you need. However, sometimes you may need to associate data

with the relationship between two models.

For example, consider the case of an application tracking the musical groups which musicians belong to.
There is a many-to-many relationship between a person and the groups of which they are a member, so
you could use a ManyToManyField to represent this relationship. However, there is a lot of detail about the

membership that you might want to collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used to govern the many-to-many
relationship. You can then put extra fields on the intermediate model. The intermediate model is associated
with the ManyToManyFieldusing the through argument to point to the model that will act as an intermediary.

For our musician example, the code would look something like this:

from django.db import models

class Person(models.Model):

name = models.CharField(max_length=128)

def __str__(DE:

return .name

class Group(models.Model):
name = models.CharField(max_length=128)

members = models.ManyToManyField(Person, through="Membership")

def __str__(DE:

return .name

class Membership(models.Model):
person = models.ForeignKey(Person, on_delete=models.CASCADE)
group = models.ForeignKey(Group, on_delete=models.CASCADE)
date_joined = models.DateField()

invite_reason = models.CharField(max_length=64)

class Meta:

(continues on next page)

3.2. Models and databases 115

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
constraints = [
models.UniqueConstraint (

fields=["person", "group"], name="unique_person_group"

When you set up the intermediary model, you explicitly specify foreign keys to the models that are involved

in the many-to-many relationship. This explicit declaration defines how the two models are related.

If you don’t want multiple associations between the same instances, add a UniqueConstraint including the

from and to fields. Django’s automatically generated many-to-many tables include such a constraint.
There are a few restrictions on the intermediate model:

¢ Your intermediate model must contain one - and only one - foreign key to the source model (this would
be Group in our example), or you must explicitly specify the foreign keys Django should use for the
relationship using ManyToManyField. through_fields. If you have more than one foreign key and
through_fields is not specified, a validation error will be raised. A similar restriction applies to the

foreign key to the target model (this would be Person in our example).

¢ For a model which has a many-to-many relationship to itself through an intermediary model, two
foreign keys to the same model are permitted, but they will be treated as the two (different) sides of the
many-to-many relationship. If through_fields is not specified, the first foreign key will be taken to
represent the source side of the ManyToManyField, while the second will be taken to represent the target
side. If there are more than two foreign keys though, you must specify through_fields to explicitly

indicate which foreign keys to use, otherwise a validation error will be raised.

Now that you have set up your ManyToManyField to use your intermediary model (Membership, in this case),
you're ready to start creating some many-to-many relationships. You do this by creating instances of the

intermediate model:

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> ml = Membership(
person=ringo,
group=beatles,
date_joined=date (1962, 8, 16),
invite_reason="Needed a new drummer.",
.)
>>> ml.save()
>>> beatles.members.all()

<QuerySet [<Person: Ringo Starr>]>

(continues on next page)

116 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

>>> ringo.group_set.all()
<QuerySet [<Group: The Beatles>]>
>>> m2 = Membership.objects.create(

person=paul,

group=beatles,

date_joined=date (1960, 8, 1),

invite_reason="Wanted to form a band.",

)

>>> beatles.members.all()

<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>]>

You can also use add (), create (), or set () to create relationships, aslong as you specify through_defaults

for any required fields:

>>> beatles.members.add(john, through_defaults={"date joined": date(1960, 8, 1)1})
>>> beatles.members.create(
name="George Harrison'", through_defaults={"date_joined": date(1960, 8, 1)}
)
>>> beatles.members.set(

[john, paul, ringo, george], through_defaults={"date_joined": date(1960, 8, 1)}

You may prefer to create instances of the intermediate model directly.

If the custom through table defined by the intermediate model does not enforce uniqueness on the (model1,

model?2) pair, allowing multiple values, the remove () call will remove all intermediate model instances:

>>> Membership.objects.create(

person=ringo,

group=beatles,

date_joined=date (1968, 9, 4),

invite_reason="You've been gone for a month and we miss you.",

)

>>> beatles.members.all()
<QuerySet [<Person: Ringo Starr>, <Person: Paul McCartney>, <Person: Ringo Starr>]>
>>> # This deletes both of the intermediate model instances for Ringo Starr
>>> beatles.members.remove (ringo)
>>> beatles.members.all()

<QuerySet [<Person: Paul McCartney>]>

The clear () method can be used to remove all many-to-many relationships for an instance:

3.2. Models and databases 117

Django Documentation, Release 5.2.7.dev20250917080137

>>> # Beatles have broken up

>>> beatles.members.clear()

>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()

<QuerySet [1>

Once you have established the many-to-many relationships, you can issue queries. Just as with normal many-

to-many relationships, you can query using the attributes of the many-to-many-related model:

Find all the groups with a member whose name starts with 'Paul'
>>> Group.objects.filter (members__name__startswith="Paul")

<QuerySet [<Group: The Beatles>]>

As you are using an intermediate model, you can also query on its attributes:

Find all the members of the Beatles that joined after 1 Jan 1961
>>> Person.objects.filter(
group__name="The Beatles", membership__date_joined__gt=date(1961, 1, 1)
)

<QuerySet [<Person: Ringo Starr]>

If you need to access a membership’s information you may do so by directly querying the Membership model:

>>> ringos_membership = Membership.objects.get (group=beatles, person=ringo)
>>> ringos_membership.date_joined

datetime.date (1962, 8, 16)

>>> ringos_membership.invite_reason

'Needed a new drummer.'

Another way to access the same information is by querying the many-to-many reverse relationship from a

Person object:

>>> ringos_membership = ringo.membership_set.get (group=beatles)
>>> ringos_membership.date_joined

datetime.date (1962, 8, 16)

>>> ringos_membership.invite_reason

'Needed a new drummer.'

118 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

One-to-one relationships

To define a one-to-one relationship, use OneToOneField. You use it just like any other Field type: by in-

cluding it as a class attribute of your model.
This is most useful on the primary key of an object when that object “extends” another object in some way.
OneToOneField requires a positional argument: the class to which the model is related.

For example, if you were building a database of “places”, you would build pretty standard stuff such as
address, phone number, etc. in the database. Then, if you wanted to build a database of restaurants on top
of the places, instead of repeating yourself and replicating those fields in the Restaurant model, you could
make Restaurant have a OneToOneField to Place (because a restaurant “is a” place; in fact, to handle this

you’d typically use inheritance, which involves an implicit one-to-one relation).

As with ForeignKey, a recursive relationship can be defined and references to as-yet undefined models can

be made.

> See also

See the One-to-one relationship model example for a full example.

OneToOneField fields also accept an optional parent_1link argument.

OneToOneField classes used to automatically become the primary key on a model. This is no longer true
(although you can manually pass in the primary_key argument if you like). Thus, it’s now possible to have

multiple fields of type OneToOneField on a single model.

Models across files

It’s perfectly OK to relate a model to one from another app. To do this, import the related model at the top
of the file where your model is defined. Then, refer to the other model class wherever needed. For example:

from django.db import models

from geography.models import ZipCode

class Restaurant(models.Model):

zip_code = models.ForeignKey(
ZipCode,
on_delete=models.SET_NULL,
blank=True,

null=True,

3.2. Models and databases 119

Django Documentation, Release 5.2.7.dev20250917080137

Alternatively, you can use a lazy reference to the related model, specified as a string in the format

"app_label.ModelName". This does not require the related model to be imported. For example:

from django.db import models

class Restaurant(models.Model):

zip_code = models.ForeignKey (
"geography.ZipCode",
on_delete=models.SET_NULL,
blank=True,

null=True,

See lazy relationships for more details.

Field name restrictions

Django places some restrictions on model field names:

1. A field name cannot be a Python reserved word, because that would result in a Python syntax error.

For example:

class Example(models.Model):

pass = models.IntegerField() # 'pass' is a reserved word!

2. A field name cannot contain more than one underscore in a row, due to the way Django’s query lookup

syntax works. For example:

class Example(models.Model):
foo__bar = models.IntegerField()

3. A field name cannot end with an underscore, for similar reasons.
4. A field name cannot be check, as this would override the check framework’s Model . check () method.

These limitations can be worked around, though, because your field name doesn’t necessarily have to match

your database column name. See the db_column option.

SQL reserved words, such as join, where or select, are allowed as model field names, because Django escapes
all database table names and column names in every underlying SQL query. It uses the quoting syntax of

your particular database engine.

120 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if you wish to take advantage of
some less common database column types, you can create your own field class. Full coverage of creating your
own fields is provided in How to create custom model fields.

Meta options

Give your model metadata by using an inner class Meta, like so:

from django.db import models

class Ox(models.Model):
horn_length = models.IntegerField()

class Meta:
ordering = ["horn_length']

verbose_name_plural = "oxen'"

Model metadata is “anything that’s not a field”, such as ordering options (ordering), database table name
(db_table), or human-readable singular and plural names (verbose_nameand verbose_name_plural). None

are required, and adding class Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model option reference.

Model attributes

objects
The most important attribute of a model is the Manager. It’s the interface through which database
query operations are provided to Django models and is used to retrieve the instances from the database.
If no custom Manager is defined, the default name is objects. Managers are only accessible via model

classes, not the model instances.

Model methods

Define custom methods on a model to add custom “row-level” functionality to your objects. Whereas Manager

methods are intended to do “table-wide” things, model methods should act on a particular model instance.
This is a valuable technique for keeping business logic in one place — the model.

For example, this model has a few custom methods:

from django.db import models

(continues on next page)

3.2. Models and databases 121

Django Documentation, Release 5.2.7.dev20250917080137

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
birth_date = models.DateField()

def baby_boomer_status(E
"Returns the person's baby-boomer status."

import datetime

if .birth_date < datetime.date(1945, 8, 1):

return "Pre-boomer"

elif .birth_date < datetime.date(1965, 1, 1):

return "Baby boomer"
else:

return "Post-boomer"

@property
def full_name ()
"Returns the person's full name."

return f"{ .first_name} { .last_name}"

(continued from previous page)

The last method in this example is a property.

The model instance reference has a complete list of methods automatically given to each model. You can

override most of these — see overriding predefined model methods, below — but there are a couple that you’ll

almost always want to define:

str__Q)

A Python “magic method” that returns a string representation of any object. This is what Python and

Django will use whenever a model instance needs to be coerced and displayed as a plain string. Most

notably, this happens when you display an object in an interactive console or in the admin.

You’'ll always want to define this method; the default isn’t very helpful at all.

get_absolute_url()

This tells Django how to calculate the URL for an object. Django uses this in its admin interface, and

any time it needs to figure out a URL for an object.

Any object that has a URL that uniquely identifies it should define this method.

122

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Overriding predefined model methods

There’s another set of model methods that encapsulate a bunch of database behavior that you’ll want to

customize. In particular you’ll often want to change the way save () and delete () work.
You're free to override these methods (and any other model method) to alter behavior.

A classic use-case for overriding the built-in methods is if you want something to happen whenever you save

an object. For example (see save () for documentation of the parameters it accepts):

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(, *xkwargs):
do_something()
() . save (**kwargs)

do_something_else()

You can also prevent saving:

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def save(, **kwargs) :
if .name == "Yoko Ono's blog":
return
else:

() .save (*xkwargs)

It’s important to remember to call the superclass method — that’s that super () . save (x*kwargs) business —
to ensure that the object still gets saved into the database. If you forget to call the superclass method, the

default behavior won’t happen and the database won’t get touched.

It’s also important that you pass through the arguments that can be passed to the model method - that’s what
the *xkwargs bit does. Django will, from time to time, extend the capabilities of built-in model methods,
adding new keyword arguments. If you use **kwargs in your method definitions, you are guaranteed that

your code will automatically support those arguments when they are added.

3.2. Models and databases 123

Django Documentation, Release 5.2.7.dev20250917080137

If you wish to update a field value in the save () method, you may also want to have this field added to the
update_fields keyword argument. This will ensure the field is saved when update_fields is specified. For

example:

from django.db import models

from django.utils.text import slugify

class Blog(models.Model):
name = models.CharField(max_length=100)

slug = models.TextField()
def save(, *xkwargs):
.slug = slugify(.name)
if (

update_fields := kwargs.get("update fields")
) is not None and "name' in update_fields:
kwargs ["update_fields"] = {"slug"}.union(update_fields)

() .save (**kwargs)

See Specifying which fields to save for more details.

© Overridden model methods are not called on bulk operations

Note that the delete () method for an object is not necessarily called when deleting objects in bulk using
a QuerySet or as a result of a cascading delete. To ensure customized delete logic gets executed, you

can use pre_delete and/or post_delete signals.

Unfortunately, there isn’t a workaround when creating or updating objects in bulk, since none of

save (), pre_save, and post_save are called.

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and module-level methods.

For more details on using raw SQL, see the documentation on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal class inheritance works in Python,
but the basics at the beginning of the page should still be followed. That means the base class should subclass
django.db.models.Model.

The only decision you have to make is whether you want the parent models to be models in their own right

(with their own database tables), or if the parents are just holders of common information that will only be

124 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

visible through the child models.
There are three styles of inheritance that are possible in Django.

1. Often, you will just want to use the parent class to hold information that you don’t want to have to
type out for each child model. This class isn’t going to ever be used in isolation, so Abstract base classes

are what you're after.

2. If you're subclassing an existing model (perhaps something from another application entirely) and want

each model to have its own database table, Multi-table inheritance is the way to go.

3. Finally, if you only want to modify the Python-level behavior of a model, without changing the models

fields in any way, you can use Proxy models.

Abstract base classes

Abstract base classes are useful when you want to put some common information into a number of other
models. You write your base class and put abstract=True in the Meta class. This model will then not be
used to create any database table. Instead, when it is used as a base class for other models, its fields will be
added to those of the child class.

An example:

from django.db import models

class CommonInfo(models.Model):
name = models.CharField(max_length=100)

age = models.PositiveIntegerField()
class Meta:

abstract = True

class Student (CommonInfo):

home_group = models.CharField(max_length=5)

The Student model will have three fields: name, age and home_group. The CommonInfo model cannot be used
as a normal Django model, since it is an abstract base class. It does not generate a database table or have a

manager, and cannot be instantiated or saved directly.

Fields inherited from abstract base classes can be overridden with another field or value, or be removed with

None.

For many uses, this type of model inheritance will be exactly what you want. It provides a way to factor out
common information at the Python level, while still only creating one database table per child model at the

database level.

3.2. Models and databases 125

Django Documentation, Release 5.2.7.dev20250917080137

Meta inheritance

When an abstract base class is created, Django makes any Meta inner class you declared in the base class
available as an attribute. If a child class does not declare its own Meta class, it will inherit the parent’s Meta.

If the child wants to extend the parent’s Meta class, it can subclass it. For example:

from django.db import models

class CommonInfo(models.Model):

class Meta:

abstract = True

ordering = ["name']

class Student (CommonInfo):

class Meta(CommonInfo.Meta):

db_table = "student_info"

Django does make one adjustment to the Meta class of an abstract base class: before installing the Meta
attribute, it sets abstract=False. This means that children of abstract base classes don’t automatically
become abstract classes themselves. To make an abstract base class that inherits from another abstract base

class, you need to explicitly set abstract=True on the child.

Some attributes won’t make sense to include in the Meta class of an abstract base class. For example, includ-
ing db_table would mean that all the child classes (the ones that don’t specify their own Meta) would use

the same database table, which is almost certainly not what you want.

Due to the way Python inheritance works, if a child class inherits from multiple abstract base classes, only
the Meta options from the first listed class will be inherited by default. To inherit Meta options from multiple

abstract base classes, you must explicitly declare the Meta inheritance. For example:

from django.db import models

class CommonInfo(models.Model):
name = models.CharField(max_length=100)

age = models.PositivelIntegerField()

class Meta:

abstract = True

(continues on next page)

126 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

ordering = ["name']

class Unmanaged(models.Model) :
class Meta:
abstract = True

managed = False

class Student(CommonInfo, Unmanaged) :

home_group = models.CharField(max_length=5)

class Meta(CommonInfo.Meta, Unmanaged.Meta):

pass

Be careful with related_name and related_query_name

If you are using related_name or related_query_name on a ForeignKey or ManyToManyField, you must
always specify a unique reverse name and query name for the field. This would normally cause a problem in
abstract base classes, since the fields on this class are included into each of the child classes, with exactly the

same values for the attributes (including related_name and related_query_name) each time.

To work around this problem, when you are using related_nameor related_query_namein an abstract base

class (only), part of the value should contain '%(app_label)s' and '%(class)s'.
o 'Y (class)s' isreplaced by the lowercased name of the child class that the field is used in.

¢ 'J(app_label)s' is replaced by the lowercased name of the app the child class is contained within.
Each installed application name must be unique and the model class names within each app must also

be unique, therefore the resulting name will end up being different.

For example, given an app common/models.py:

from django.db import models

class Base(models.Model):
m2m = models.ManyToManyField(
OtherModel,
related_name="Y,(app_label)s_%(class)s_related",

related_query_name="Y (app_label)s % (class)ss",

(continues on next page)

3.2. Models and databases 127

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
class Meta:

abstract = True

class ChildA(Base):

pass

class ChildB(Base):

pass

Along with another app rare/models.py:

from common.models import Base

class ChildB(Base):

pass

The reverse name of the common.ChildA.m2m field will be common_childa_related and the reverse
query name will be common_childas. The reverse name of the common.ChildB.m2m field will be
common_childb_related and the reverse query name will be common_childbs. Finally, the reverse name of
the rare.ChildB.m2m field will be rare_childb_related and the reverse query name will be rare_childbs.
It’s up to you how you use the '%(class)s' and '%(app_label)s' portion to construct your related name
or related query name but if you forget to use it, Django will raise errors when you perform system checks

(or run migrate).

If you don’t specify a related_name attribute for a field in an abstract base class, the default reverse name
will be the name of the child class followed by ' _set', just as it normally would be if you’d declared the field
directly on the child class. For example, in the above code, if the related_name attribute was omitted, the
reverse name for the m2m field would be childa_set in the ChildA case and childb_set for the ChildB field.

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in the hierarchy is a model
all by itself. Each model corresponds to its own database table and can be queried and created individu-
ally. The inheritance relationship introduces links between the child model and each of its parents (via an

automatically-created OneToOneField). For example:

from django.db import models

(continues on next page)

128 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

class Restaurant (Place):
serves_hot_dogs = models.BooleanField(default=False)

serves_pizza = models.BooleanField(default=False)

All of the fields of Place will also be available in Restaurant, although the data will reside in a different
database table. So these are both possible:

>>> Place.objects.filter (name="Bob's Cafe')

>>> Restaurant.objects.filter(name="Bob's Cafe")

If you have a Place that is also a Restaurant, you can get from the Place object to the Restaurant object

by using the lowercase version of the model name:

>>> p = Place.objects.get(id=12)
If p is a Restaurant object, this will give the child class:
>>> p.restaurant

<Restaurant: ...>

However, if p in the above example was not a Restaurant (it had been created directly as a Place object
or was the parent of some other class), referring to p.restaurant would raise a Restaurant .DoesNotExist

exception.

The automatically-created OneToOneField on Restaurant that links it to Place looks like this:

place_ptr = models.0OneToOneField(
Place,
on_delete=models.CASCADE,
parent_link=True,

primary_key=True,

You can override that field by declaring your own OneToOneField with parent_link=True on Restaurant.

3.2. Models and databases 129

Django Documentation, Release 5.2.7.dev20250917080137

Meta and multi-table inheritance

In the multi-table inheritance situation, it doesn’t make sense for a child class to inherit from its parent’s
Meta class. All the Meta options have already been applied to the parent class and applying them again
would normally only lead to contradictory behavior (this is in contrast with the abstract base class case,

where the base class doesn’t exist in its own right).

So a child model does not have access to its parent’s Meta class. However, there are a few limited cases
where the child inherits behavior from the parent: if the child does not specify an ordering attribute or a

get_latest_by attribute, it will inherit these from its parent.

If the parent has an ordering and you don’t want the child to have any natural ordering, you can explicitly
disable it:

class ChildModel (ParentModel) :

class Meta:

ordering = []

Inheritance and reverse relations

Because multi-table inheritance uses an implicit OneToOneField to link the child and the parent, it’s possible
to move from the parent down to the child, as in the above example. However, this uses up the name that
is the default related_name value for Foreignkey and ManyToManyField relations. If you are putting those
types of relations on a subclass of the parent model, you must specify the related_name attribute on each

such field. If you forget, Django will raise a validation error.

For example, using the above Place class again, let’s create another subclass with a ManyToManyField:

class Supplier(Place):

customers = models.ManyToManyField(Place)

This results in the error:

Reverse query name for 'Supplier.customers' clashes with reverse query

name for 'Supplier.place_ptr'.

HINT: Add or change a related_name argument to the definition for

'Supplier.customers' or 'Supplier.place_ptr'.

Adding related_name to the customers field as follows would resolve the error: models.

ManyToManyField(Place, related_name='provider').

130 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Specifying the parent link field

As mentioned, Django will automatically create a OneToOneField linking your child class back to any non-
abstract parent models. If you want to control the name of the attribute linking back to the parent, you can
create your own OneToOneField and set parent_link=True to indicate that your field is the link back to the

parent class.

Proxy models

When using multi-table inheritance, a new database table is created for each subclass of a model. This is
usually the desired behavior, since the subclass needs a place to store any additional data fields that are not
present on the base class. Sometimes, however, you only want to change the Python behavior of a model -

perhaps to change the default manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the original model. You can create, delete
and update instances of the proxy model and all the data will be saved as if you were using the original (non-
proxied) model. The difference is that you can change things like the default model ordering or the default

manager in the proxy, without having to alter the original.

Proxy models are declared like normal models. You tell Django that it’s a proxy model by setting the prozy

attribute of the Meta class to True.

For example, suppose you want to add a method to the Person model. You can do it like this:

from django.db import models

class Person(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

class MyPerson(Person) :
class Meta:
proxy = True

def do_something():

pass

The MyPerson class operates on the same database table as its parent Person class. In particular, any new

instances of Person will also be accessible through MyPerson, and vice-versa:

>>> p = Person.objects.create(first_name="foobar")

(continues on next page)

3.2. Models and databases 131

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> MyPerson.objects.get (first_name="foobar")

<MyPerson: foobar>

You could also use a proxy model to define a different default ordering on a model. You might not always

want to order the Person model, but regularly order by the last_name attribute when you use the proxy:

class OrderedPerson(Person) :
class Meta:
ordering = ["last_name']

proxy = True

Now normal Person queries will be unordered and OrderedPerson queries will be ordered by last_name.

Proxy models inherit Meta attributes in the same way as regular models.

QuerySets still return the model that was requested

There is no way to have Django return, say, a MyPerson object whenever you query for Person objects. A
queryset for Person objects will return those types of objects. The whole point of proxy objects is that code
relying on the original Person will use those and your own code can use the extensions you included (that no
other code is relying on anyway). It is not a way to replace the Person (or any other) model everywhere with

something of your own creation.

Base class restrictions

A proxy model must inherit from exactly one non-abstract model class. You can’t inherit from multiple
non-abstract models as the proxy model doesn’t provide any connection between the rows in the different
database tables. A proxy model can inherit from any number of abstract model classes, providing they do
not define any model fields. A proxy model may also inherit from any number of proxy models that share a

common non-abstract parent class.

Proxy model managers

If you don’t specify any model managers on a proxy model, it inherits the managers from its model parents.
If you define a manager on the proxy model, it will become the default, although any managers defined on

the parent classes will still be available.

Continuing our example from above, you could change the default manager used when you query the Person
model like this:

from django.db import models

(continues on next page)

132 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

class NewManager (models.Manager) :

pass

class MyPerson(Person) :

objects = NewManager ()

class Meta:

proxy = True

If you wanted to add a new manager to the Proxy, without replacing the existing default, you can use the
techniques described in the custom manager documentation: create a base class containing the new managers

and inherit that after the primary base class:

class ExtraManagers(models.Model):

secondary = NewManager ()

class Meta:

abstract = True

class MyPerson(Person, ExtraManagers):
class Meta:

proxy = True

You probably won’t need to do this very often, but, when you do, it’s possible.

Differences between proxy inheritance and unmanaged models

Proxy model inheritance might look fairly similar to creating an unmanaged model, using the managed at-

tribute on a model’s Meta class.

With careful setting of Meta.db_table you could create an unmanaged model that shadows an existing
model and adds Python methods to it. However, that would be very repetitive and fragile as you need to

keep both copies synchronized if you make any changes.

On the other hand, proxy models are intended to behave exactly like the model they are proxying for. They

are always in sync with the parent model since they directly inherit its fields and managers.
The general rules are:

1. If you are mirroring an existing model or database table and don’t want all the original database table

3.2. Models and databases 133

Django Documentation, Release 5.2.7.dev20250917080137

columns, use Meta.managed=False. That option is normally useful for modeling database views and

tables not under the control of Django.

2. If you are wanting to change the Python-only behavior of a model, but keep all the same fields as in
the original, use Meta.proxy=True. This sets things up so that the proxy model is an exact copy of the

storage structure of the original model when data is saved.

Multiple inheritance

Just as with Python’s subclassing, it’s possible for a Django model to inherit from multiple parent models.
Keep in mind that normal Python name resolution rules apply. The first base class that a particular name
(e.g. Meta) appears in will be the one that is used; for example, this means that if multiple parents contain a

Meta class, only the first one is going to be used, and all others will be ignored.

Generally, you won’t need to inherit from multiple parents. The main use-case where this is useful is for “mix-
in” classes: adding a particular extra field or method to every class that inherits the mix-in. Try to keep your
inheritance hierarchies as simple and straightforward as possible so that you won’t have to struggle to work

out where a particular piece of information is coming from.

Note that inheriting from multiple models that have a common id primary key field will raise an error. To

properly use multiple inheritance, you can use an explicit 4utoField in the base models:

class Article(models.Model):

article_id = models.AutoField(primary_key=True)

class Book(models.Model):
book_id = models.AutoField(primary_key=True)

class BookReview(Book, Article):

pass

Or use a common ancestor to hold the 4utoField. This requires using an explicit OneToOneField from each
parent model to the common ancestor to avoid a clash between the fields that are automatically generated
and inherited by the child:

class Piece(models.Model):

pass

class Article(Piece):

(continues on next page)

134 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

article_piece = models.0OneToOneField(

Piece, on_delete=models.CASCADE, parent_link=True

class Book(Piece):

book_piece = models.OneToOneField(Piece, on_delete=models.CASCADE, parent_link=True)

class BookReview(Book, Article):

pass

Field name “hiding” is not permitted

In normal Python class inheritance, it is permissible for a child class to override any attribute from the parent
class. In Django, this isn’t usually permitted for model fields. If a non-abstract model base class has a field
called author, you can’t create another model field or define an attribute called author in any class that

inherits from that base class.

This restriction doesn’t apply to model fields inherited from an abstract model. Such fields may be overridden

with another field or value, or be removed by setting field_name = None.

A Warning

Model managers are inherited from abstract base classes. Overriding an inherited field which is referenced

by an inherited Manager may cause subtle bugs. See custom managers and model inheritance.

O Note

Some fields define extra attributes on the model, e.g. a ForeignKey defines an extra attribute with _id

appended to the field name, as well as related_name and related_query_name on the foreign model.

These extra attributes cannot be overridden unless the field that defines it is changed or removed so that

it no longer defines the extra attribute.

Overriding fields in a parent model leads to difficulties in areas such as initializing new instances (specifying
which field is being initialized in Model.__init__)and serialization. These are features which normal Python
class inheritance doesn’t have to deal with in quite the same way, so the difference between Django model

inheritance and Python class inheritance isn’t arbitrary.

3.2. Models and databases 135

Django Documentation, Release 5.2.7.dev20250917080137

This restriction only applies to attributes which are Field instances. Normal Python attributes can be over-
ridden if you wish. It also only applies to the name of the attribute as Python sees it: if you are manually
specifying the database column name, you can have the same column name appearing in both a child and

an ancestor model for multi-table inheritance (they are columns in two different database tables).
Django will raise a FieldError if you override any model field in any ancestor model.

Note that because of the way fields are resolved during class definition, model fields inherited from multiple
abstract parent models are resolved in a strict depth-first order. This contrasts with standard Python MRO,
which is resolved breadth-first in cases of diamond shaped inheritance. This difference only affects complex

model hierarchies, which (as per the advice above) you should try to avoid.

Organizing models in a package

The manage.py startapp command creates an application structure that includes a models.py file. If you

have many models, organizing them in separate files may be useful.

To do so, create a models package. Remove models.py and create a myapp/models/ directory with an

__init__.py file and the files to store your models. You must import the models in the __init__.py file.

For example, if you had organic.py and synthetic.py in the models directory:

Listing 1: myapp/models/__init__.py

from .organic import Person

from .synthetic import Robot

Explicitly importing each model rather than using from .models import * has the advantages of not clut-

tering the namespace, making code more readable, and keeping code analysis tools useful.

> See also

The Models Reference

Covers all the model related APIs including model fields, related objects, and QuerySet.

3.2.2 Making queries

Once you've created your data models, Django automatically gives you a database-abstraction API that lets
you create, retrieve, update and delete objects. This document explains how to use this API. Refer to the

data model reference for full details of all the various model lookup options.

Throughout this guide (and in the reference), we’ll refer to the following models, which comprise a blog

application:

from datetime import date

(continues on next page)

136 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from django.db import models

class Blog(models.Model):
name = models.CharField(max_length=100)
tagline = models.TextField()

def __str__()

return .name

class Author (models.Model):
name = models.CharField(max_length=200)

email = models.EmailField()

def __str__(DE:

return .name

class Entry(models.Model):

blog = models.ForeignKey(Blog, on_delete=models.CASCADE)

headline = models.CharField(max_length=255)
body_text = models.TextField()
models.DateField ()
models.DateField(default=date.today)

pub_date

mod_date
authors = models.ManyToManyField (Author)
number_of_comments = models.IntegerField(default=0)
number_of_pingbacks = models.IntegerField(default=0)
rating = models.IntegerField(default=5)

def __str__(DE:

return .headline

(continued from previous page)

Creating objects

Torepresent database-table data in Python objects, Django uses an intuitive system: A model class represents

a database table, and an instance of that class represents a particular record in the database table.

To create an object, instantiate it using keyword arguments to the model class, then call save () to save it to

the database.

Assuming models live in a models.py file inside a blog Django app, here is an example:

3.2. Models and databases

137

Django Documentation, Release 5.2.7.dev20250917080137

>>> from blog.models import Blog
>>> b = Blog(name="Beatles Blog", tagline="All the latest Beatles news.")

>>> b.save()

This performs an INSERT SQL statement behind the scenes. Django doesn’t hit the database until you explic-
itly call save ().

The save () method has no return value.

> See also

save () takes a number of advanced options not described here. See the documentation for save () for

complete details.

To create and save an object in a single step, use the create () method.

Saving changes to objects
To save changes to an object that’s already in the database, use save ().

Given a Blog instance b5 that has already been saved to the database, this example changes its name and

updates its record in the database:

>>> bb.name = "New name"

>>> b5.save()

This performs an UPDATE SQL statement behind the scenes. Django doesn’t hit the database until you explic-
itly call save ().

Saving ForeignKey and ManyToManyField fields

Updating a ForeignKey field works exactly the same way as saving a normal field — assign an object of the
right type to the field in question. This example updates the blog attribute of an Entry instance entry,
assuming appropriate instances of Entry and Blog are already saved to the database (so we can retrieve
them below):

>>> from blog.models import Blog, Entry

>>> entry = Entry.objects.get (pk=1)

>>> cheese_blog = Blog.objects.get(name="Cheddar Talk")
>>> entry.blog = cheese_blog

>>> entry.save()

Updating a ManyToManyField works a little differently — use the add () method on the field to add a record

to the relation. This example adds the Author instance joe to the entry object:

138 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> from blog.models import Author
>>> joe = Author.objects.create(name="Joe")

>>> entry.authors.add(joe)

To add multiple records to a ManyToManyField in one go, include multiple arguments in the call to add (),
like this:

>>> john = Author.objects.create(name="John'")

>>> paul = Author.objects.create(name="Paul")
>>> george = Author.objects.create(name="Ceorge")
>>> ringo = Author.objects.create(name="Ringo")

>>> entry.authors.add(john, paul, george, ringo)

Django will complain if you try to assign or add an object of the wrong type.

Retrieving objects
To retrieve objects from your database, construct a QuerySet via a Manager on your model class.

A QuerySet represents a collection of objects from your database. It can have zero, one or many filters.
Filters narrow down the query results based on the given parameters. In SQL terms, a QuerySet equates to
a SELECT statement, and a filter is a limiting clause such as WHERE or LIMIT.

You get a QuerySet by using your model’s Manager. Each model has at least one Manager, and it’s called

objects by default. Access it directly via the model class, like so:

>>> Blog.objects
<django.db.models.manager.Manager object at ...>
>>> b = Blog(name="Foo", tagline="Bar'")

>>> b.objects

Traceback:

AttributeError: "Manager isn't accessible via Blog instances."

O Note

A Manager is accessible only via model classes, rather than from model instances, to enforce a separation

between “table-level” operations and “record-level” operations.

The Manager is the main source of querysets for a model. For example, Blog.objects.all() returns a

QuerySet that contains all Blog objects in the database.

3.2. Models and databases 139

Django Documentation, Release 5.2.7.dev20250917080137

Retrieving all objects

The simplest way to retrieve objects from a table is to get all of them. To do this, use the a1 () method on a

Manager:

>>> all_entries = Entry.objects.all()

The al1 () method returns a GuerySet of all the objects in the database.

Retrieving specific objects with filters

The QuerySet returned by all () describes all objects in the database table. Usually, though, you’ll need to
select only a subset of the complete set of objects.

To create such a subset, you refine the initial QuerySet, adding filter conditions. The two most common ways

to refine a QuerySet are:

filter (x*kwargs)
Returns a new GuerySet containing objects that match the given lookup parameters.

exclude (**kwargs)
Returns a new QuerySet containing objects that do not match the given lookup parameters.

The lookup parameters (x*kwargs in the above function definitions) should be in the format described in

Field lookups below.

For example, to get a QuerySet of blog entries from the year 2006, use filter() like so:

‘Entry.objects.filter(pub_date__year=2006) ’

With the default manager class, it is the same as:

‘Entry.objects.all().filter(pub_date__year=2006) ’

Chaining filters

The result of refining a QuerySet is itself a QuerySet, so it’s possible to chain refinements together. For

example:

>>> Entry.objects.filter (headline__startswith="What").exclude(
pub_date__gte=datetime.date.today ()
.).filter(pub_date__gte=datetime.date (2005, 1, 30))

This takes the initial guerySet of all entries in the database, adds a filter, then an exclusion, then another

filter. The final result is a QuerySet containing all entries with a headline that starts with “What”, that were

published between January 30, 2005, and the current day.

140 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Filtered QuerySets are unique

Each time you refine a QuerySet, you get a brand-new @uerySet that is in no way bound to the previous

QuerySet. Each refinement creates a separate and distinct QuerySet that can be stored, used and reused.

Example:

>>> ql = Entry.objects.filter (headline__startswith="What")
>>> g2 = ql.exclude(pub_date__gte=datetime.date.today())
>>> g3 = ql.filter(pub_date__gte=datetime.date.today())

These three querysets are separate. The first is a base QuerySet containing all entries that contain a headline
starting with “What”. The second is a subset of the first, with an additional criteria that excludes records
whose pub_date is today or in the future. The third is a subset of the first, with an additional criteria that
selects only the records whose pub_date is today or in the future. The initial guerySet (q1) is unaffected by

the refinement process.

QuerySets are lazy

QuerySet objects are lazy — the act of creating a QuerySet doesn’t involve any database activity. You can
stack filters together all day long, and Django won’t actually run the query until the QuerySet is evaluated.

Take a look at this example:

>>> q = Entry.objects.filter(headline__startswith="What")
>>> q = q.filter(pub_date__lte=datetime.date.today())
>>> q = q.exclude(body_text__icontains="food")

>>> (@

Though this looks like three database hits, in fact it hits the database only once, at the last line (print (q)).
In general, the results of a GuerySet aren’t fetched from the database until you “ask” for them. When you
do, the GuerySet is evaluated by accessing the database. For more details on exactly when evaluation takes

place, see When QuerySets are evaluated.

Retrieving a single object with get ()

filter () will always give you a QuerySet, even if only a single object matches the query - in this case, it will

be a QuerySet containing a single element.

If you know there is only one object that matches your query, you can use the get () method on a Manager

which returns the object directly:

>>> one_entry = Entry.objects.get (pk=1)

You can use any query expression with get (), just like with filter() - again, see Field lookups below.

3.2. Models and databases 141

Django Documentation, Release 5.2.7.dev20250917080137

Note that there is a difference between using get (), and using filter() with a slice of [0]. If there are no
results that match the query, get () will raise a DoesNotExist exception. This exception is an attribute of
the model class that the query is being performed on - so in the code above, if there is no Entry object with

a primary key of 1, Django will raise Entry.DoesNotExist.

Similarly, Django will complain if more than one item matches the get () query. In this case, it will raise

MultipleObjectsReturned, which again is an attribute of the model class itself.

Other QuerySet methods

Most of the time youwll use all (), get (), filter() and ezclude () when you need to look up objects from
the database. However, that’s far from all there is; see the QuerySet API Reference for a complete list of all

the various QuerySet methods.

Limiting QuerySets

Use a subset of Python’s array-slicing syntax to limit your GuerySet to a certain number of results. This is
the equivalent of SQL’s LIMIT and OFFSET clauses.

For example, this returns the first 5 objects (LIMIT 5):

‘ >>> Entry.objects.all() [:5]

This returns the sixth through tenth objects (OFFSET 5 LIMIT 5):

‘>>> Entry.objects.all() [5:10]

Negative indexing (i.e. Entry.objects.all() [-1]) is not supported.

Generally, slicing a QuerySet returns a new GuerySet — it doesn’t evaluate the query. An exception is if you
use the “step” parameter of Python slice syntax. For example, this would actually execute the query in order

to return a list of every second object of the first 10:

>>> Entry.objects.all() [:10:2]

Further filtering or ordering of a sliced queryset is prohibited due to the ambiguous nature of how that might

work.

To retrieve a single object rather than a list (e.g. SELECT foo FROM bar LIMIT 1), use an index instead of
a slice. For example, this returns the first Entry in the database, after ordering entries alphabetically by

headline:

>>> Entry.objects.order_by("headline") [0]

This is roughly equivalent to:

142 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> Entry.objects.order_by("headline") [0:1].get ()

Note, however, that the first of these will raise IndexError while the second will raise DoesNotExist if no

objects match the given criteria. See get () for more details.

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They’re specified as keyword arguments
to the QuerySet methods filter(), exclude() and get ().

Basic lookups keyword arguments take the form field__lookuptype=value. (That’s a double-underscore).

For example:

‘ >>> Entry.objects.filter(pub_date__lte="2006-01-01")

translates (roughly) into the following SQL:

‘SELECT * FROM blog_entry WHERE pub_date <= '2006-01-01";

© How this is possible

Python has the ability to define functions that accept arbitrary name-value arguments whose names and
values are evaluated at runtime. For more information, see Keyword Arguments in the official Python

tutorial.

The field specified in a lookup has to be the name of a model field. There’s one exception though, in case of
a ForeignKey you can specify the field name suffixed with _id. In this case, the value parameter is expected

to contain the raw value of the foreign model’s primary key. For example:

>>> Entry.objects.filter(blog_id=4)

If you pass an invalid keyword argument, a lookup function will raise TypeError.

The database API supports about two dozen lookup types; a complete reference can be found in the field
lookup reference. To give you a taste of what’s available, here’s some of the more common lookups you’ll

probably use:

exact

An “exact” match. For example:

[>>> Entry.objects.get (headline__exact="Cat bites dog")

Would generate SQL along these lines:

3.2. Models and databases 143

Django Documentation, Release 5.2.7.dev20250917080137

[SELECT ... WHERE headline = 'Cat bites dog';

If you don’t provide a lookup type — that is, if your keyword argument doesn’t contain a double under-

score — the lookup type is assumed to be exact.

For example, the following two statements are equivalent:

>>> Blog.objects.get(id__exact=14)
>>> Blog.objects.get(id=14)

This is for convenience, because exact lookups are the common case.

iexact

A case-insensitive match. So, the query:

>>> Blog.objects.get (name__iexact="beatles blog")

Would match a Blog titled "Beatles Blog", "beatles blog", or even "BeAtlES bl0G".

contains

Case-sensitive containment test. For example:

[Entry.objects.get(headline__contains=”Lennon”) ’

Roughly translates to this SQL:

[SELECT ... WHERE headline LIKE ')Lennon'; ’

Note this will match the headline 'Today Lennon honored' butnot 'today lennon honored'.
There’s also a case-insensitive version, icontains.

startswith, endswith
Starts-with and ends-with search, respectively. There are also case-insensitive versions called

istartswith and iendswith

Again, this only scratches the surface. A complete reference can be found in the field lookup reference.

Lookups that span relationships

Django offers a powerful and intuitive way to “follow” relationships in lookups, taking care of the SQL JOINs
for you automatically, behind the scenes. To span a relationship, use the field name of related fields across

models, separated by double underscores, until you get to the field you want.

This example retrieves all Entry objects with a Blog whose name is 'Beatles Blog':

>>> Entry.objects.filter(blog__name="Beatles Blog")

144 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

This spanning can be as deep as you'd like.

It works backwards, too. While it can be customized, by default you refer to a “reverse” relationship in a

lookup using the lowercase name of the model.

This example retrieves all Blog objects which have at least one Entry whose headline contains 'Lennon':

>>> Blog.objects.filter(entry__headline__contains="Lennon'")

If you are filtering across multiple relationships and one of the intermediate models doesn’t have a value that
meets the filter condition, Django will treat it as if there is an empty (all values are NULL), but valid, object

there. All this means is that no error will be raised. For example, in this filter:

Blog.objects.filter(entry__authors__name="Lennon')

(if there was a related Author model), if there was no author associated with an entry, it would be treated
as if there was also no name attached, rather than raising an error because of the missing author. Usually
this is exactly what you want to have happen. The only case where it might be confusing is if you are using

isnull. Thus:

‘ Blog.objects.filter(entry__authors__name__isnull=True)

will return Blog objects that have an empty name on the author and also those which have an empty author

on the entry. If you don’t want those latter objects, you could write:

‘ Blog.objects.filter(entry__authors__isnull=False, entry__authors__name__isnull=True)

Spanning multi-valued relationships

When spanning a ManyToManyField or a reverse ForeignKey (such as from Blog to Entry), filtering on mul-
tiple attributes raises the question of whether to require each attribute to coincide in the same related object.
We might seek blogs that have an entry from 2008 with “Lennon” in its headline, or we might seek blogs that

merely have any entry from 2008 as well as some newer or older entry with “Lennon” in its headline.

To select all blogs containing at least one entry from 2008 having “Lennon” in its headline (the same entry

satisfying both conditions), we would write:

Blog.objects.filter(entry__headline__contains="Lennon'", entry__pub_date__year=2008)

Otherwise, to perform a more permissive query selecting any blogs with merely some entry with “Lennon”

in its headline and some entry from 2008, we would write:

Blog.objects.filter(entry__headline__contains="Lennon").filter(

entry__pub_date__year=2008

3.2. Models and databases 145

Django Documentation, Release 5.2.7.dev20250917080137

Suppose there is only one blog that has both entries containing “Lennon” and entries from 2008, but that
none of the entries from 2008 contained “Lennon”. The first query would not return any blogs, but the
second query would return that one blog. (This is because the entries selected by the second filter may or
may not be the same as the entries in the first filter. We are filtering the Blog items with each filter statement,
not the Entry items.) In short, if each condition needs to match the same related object, then each should be

contained in a single filter() call.

O Note

As the second (more permissive) query chains multiple filters, it performs multiple joins to the primary
model, potentially yielding duplicates.
>>> from datetime import date
>>> beatles = Blog.objects.create(name="Beatles Blog")
>>> pop = Blog.objects.create(name="Pop Music Blog")
>>> Entry.objects.create(
blog=beatles,
headline="New Lennon Biography",
pub_date=date (2008, 6, 1),
)
<Entry: New Lennon Biography>
>>> Entry.objects.create(
blog=beatles,
headline="New Lennon Biography in Paperback",
pub_date=date (2009, 6, 1),
)
<Entry: New Lennon Biography in Paperback>
>>> Entry.objects.create(
blog=pop,
headline="Best Albums of 2008",
pub_date=date (2008, 12, 15),
)
<Entry: Best Albums of 2008>
>>> Entry.objects.create(
blog=pop,
headline="Lennon Would Have Loved Hip Hop",
pub_date=date (2020, 4, 1),
)
<Entry: Lennon Would Have Loved Hip Hop>
>>> Blog.objects.filter(
entry__headline__contains="Lennon",

entry__pub_date__year=2008,

146 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

)
<QuerySet [<Blog: Beatles Blog>]>
>>> Blog.objects.filter(
entry__headline__contains="Lennon",
.).filter(
entry__pub_date__year=2008,
-
<QuerySet [<Blog: Beatles Blog>, <Blog: Beatles Blog>, <Blog: Pop Music Blog]>

O Note

The behavior of filter () for queries that span multi-value relationships, as described above, is not imple-
mented equivalently for ezclude (). Instead, the conditions in a single ezclude () call will not necessarily

refer to the same item.

For example, the following query would exclude blogs that contain both entries with “Lennon” in the
headline and entries published in 2008:

Blog.objects.exclude(
entry__headline__contains="Lennon",
entry__pub_date__year=2008,

)

However, unlike the behavior when using filter (), this will not limit blogs based on entries that satisfy
both conditions. In order to do that, i.e. to select all blogs that do not contain entries published with

“Lennon” that were published in 2008, you need to make two queries:

Blog.objects.exclude(
entry__in=Entry.objects.filter(
headline__contains="Lennon'",
pub_date__year=2008,
),

Filters can reference fields on the model

In the examples given so far, we have constructed filters that compare the value of a model field with a

constant. But what if you want to compare the value of a model field with another field on the same model?

Django provides F ezpressions to allow such comparisons. Instances of F() act as a reference to a model
field within a query. These references can then be used in query filters to compare the values of two different

fields on the same model instance.

3.2. Models and databases 147

Django Documentation, Release 5.2.7.dev20250917080137

For example, to find a list of all blog entries that have had more comments than pingbacks, we construct an

F () object to reference the pingback count, and use that F() object in the query:

>>> from django.db.models import F

>>> Entry.objects.filter (number_of_comments__gt=F("number of pingbacks"))

Django supports the use of addition, subtraction, multiplication, division, modulo, and power arithmetic with
F () objects, both with constants and with other F () objects. To find all the blog entries with more than twice

as many comments as pingbacks, we modify the query:

‘>>> Entry.objects.filter (number_of_comments__gt=F("number_ of pingbacks") * 2) ’

To find all the entries where the rating of the entry is less than the sum of the pingback count and comment

count, we would issue the query:

‘>>> Entry.objects.filter(rating__lt=F("number_of_comments") + F("number_of_pingbacks")) ’

You can also use the double underscore notation to span relationships in an F() object. An F() object with
a double underscore will introduce any joins needed to access the related object. For example, to retrieve all

the entries where the author’s name is the same as the blog name, we could issue the query:

>>> Entry.objects.filter (authors__name=F("blog__name"))

For date and date/time fields, you can add or subtract a timedelta object. The following would return all

entries that were modified more than 3 days after they were published:

>>> from datetime import timedelta

>>> Entry.objects.filter(mod_date__gt=F("pub_date") + timedelta(days=3))

The F() objects support bitwise operations by .bitand(), .bitor(), .bitxor(), .bitrightshift(), and
.bitleftshift (). For example:

>>> F("somefield") .bitand(16)

O Oracle

Oracle doesn’t support bitwise XOR operation.

Expressions can reference transforms

Django supports using transforms in expressions.

For example, to find all Entry objects published in the same year as they were last modified:

148 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> from django.db.models import F
>>> Entry.objects.filter(pub_date__year=F('"mod_date__year"))

To find the earliest year an entry was published, we can issue the query:

>>> from django.db.models import Min

>>> Entry.objects.aggregate(first_published_year=Min('"pub_date__year"))

This example finds the value of the highest rated entry and the total number of comments on all entries for

each year:

>>> from django.db.models import OuterRef, Subquery, Sum
>>> Entry.objects.values("pub_date_ _year").annotate(
top_rating=Subquery(
Entry.objects.filter(
pub_date__year=0uterRef ("pub_date__year"),
)
.order_by("-rating")
.values("rating") [:1]
s

total_comments=Sum('number of comments'"),

The pk lookup shortcut

For convenience, Django provides a pk lookup shortcut, which stands for “primary key”.

In the example Blog model, the primary key is the id field, so these three statements are equivalent:

>>> Blog.objects.get (id__exact=14)
>>> Blog.objects.get (id=14)
>>> Blog.objects.get (pk=14)

The use of pk isn’t limited to __exact queries — any query term can be combined with pk to perform a query

on the primary key of a model:

Get blogs entries with id 1, 4 and 7
>>> Blog.objects.filter(pk__in=[1, 4, 7])

Get all blog entries with id > 14
>>> Blog.objects.filter (pk__gt=14)

pk lookups also work across joins. For example, these three statements are equivalent:

3.2. Models and databases 149

Django Documentation, Release 5.2.7.dev20250917080137

>>> Entry.objects.filter(blog__id__exact=3)
>>> Entry.objects.filter(blog__id=3)
>>> Entry.objects.filter(blog__pk=3)

Escaping percent signs and underscores in LIKE statements

The field lookups that equate to LIKE SQL statements (iexact, contains, icontains, startswith,
istartswith, endswith and iendswith) will automatically escape the two special characters used in LIKE
statements — the percent sign and the underscore. (In a LIKE statement, the percent sign signifies a multiple-

character wildcard and the underscore signifies a single-character wildcard.)

This means things should work intuitively, so the abstraction doesn’t leak. For example, to retrieve all the

entries that contain a percent sign, use the percent sign as any other character:

‘ >>> Entry.objects.filter (headline__contains="7")

Django takes care of the quoting for you; the resulting SQL will look something like this:

‘SELECT ... WHERE headline LIKE 'J\%%"';

Same goes for underscores. Both percentage signs and underscores are handled for you transparently.

Caching and QuerySets

Each QuerySet contains a cache to minimize database access. Understanding how it works will allow you to

write the most efficient code.

In a newly created QuerySet, the cache is empty. The first time a QuerySet is evaluated — and, hence, a
database query happens — Django saves the query results in the QuerySet’s cache and returns the results
that have been explicitly requested (e.g., the next element, if the GuerySet is being iterated over). Subsequent

evaluations of the QuerySet reuse the cached results.

Keep this caching behavior in mind, because it may bite you if you don’t use your QuerySets correctly. For

example, the following will create two QuerySets, evaluate them, and throw them away:

>>> ([e.headline for e in Entry.objects.all()])
>>> ([e.pub_date for e in Entry.objects.all()])

That means the same database query will be executed twice, effectively doubling your database load. Also,
there’s a possibility the two lists may not include the same database records, because an Entry may have

been added or deleted in the split second between the two requests.

To avoid this problem, save the uerySet and reuse it:

150 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> queryset = Entry.objects.all()
>>> ([p.headline for p in queryset])
>>> ([p.pub_date for p in queryset])

When QuerySets are not cached

Querysets do not always cache their results. When evaluating only part of the queryset, the cache is checked,
but if it is not populated then the items returned by the subsequent query are not cached. Specifically, this

means that limiting the queryset using an array slice or an index will not populate the cache.

For example, repeatedly getting a certain index in a queryset object will query the database each time:

>>> queryset = Entry.objects.all()
>>> (queryset[5])
>>> (queryset[51)

However, if the entire queryset has already been evaluated, the cache will be checked instead:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset]
>>> (queryset[5])

>>> (queryset[5])

Here are some examples of other actions that will result in the entire queryset being evaluated and therefore

populate the cache:

>>> [entry for entry in queryset]
>>> (queryset)
>>> entry in queryset

>>> (queryset)

O Note

Simply printing the queryset will not populate the cache. This is because the call to __repr__() only

returns a slice of the entire queryset.

Asynchronous queries

If you are writing asynchronous views or code, you cannot use the ORM for queries in quite the way we have
described above, as you cannot call blocking synchronous code from asynchronous code - it will block up
the event loop (or, more likely, Django will notice and raise a SynchronousOnlyOperation to stop that from

happening).

3.2. Models and databases 151

Django Documentation, Release 5.2.7.dev20250917080137

Fortunately, you can do many queries using Django’s asynchronous query APIs. Every method that might
block - such as get () or delete() - has an asynchronous variant (aget () or adelete()), and when you

iterate over results, you can use asynchronous iteration (async for) instead.

Query iteration

The default way of iterating over a query - with for - will result in a blocking database query behind the

scenes as Django loads the results at iteration time. To fix this, you can swap to async for:

async for entry in Authors.objects.filter(name__startswith="A"):

Be aware that you also can’t do other things that might iterate over the queryset, such as wrapping 1ist ()

around it to force its evaluation (you can use async for in a comprehension, if you want it).

Because QuerySet methods like filter() and exclude() do not actually run the query - they set up the
queryset to run when it’s iterated over - you can use those freely in asynchronous code. For a guide to which

methods can keep being used like this, and which have asynchronous versions, read the next section.

QuerySet and manager methods

Some methods on managers and querysets - like get () and first () - force execution of the queryset and
are blocking. Some, like filter () and exclude(), don’t force execution and so are safe to run from asyn-

chronous code. But how are you supposed to tell the difference?

While you could poke around and see if there is an a-prefixed version of the method (for example, we have
aget () but not afilter ()), there is a more logical way - look up what kind of method it is in the QuerySet

reference.
In there, you’ll find the methods on QuerySets grouped into two sections:

¢ Methods that return new querysets: These are the non-blocking ones, and don’t have asynchronous
versions. You're free to use these in any situation, though read the notes on defer () and only () before

you use them.

¢ Methods that do not return querysets: These are the blocking ones, and have asynchronous versions -
the asynchronous name for each is noted in its documentation, though our standard pattern is to add

an a prefix.

Using this distinction, you can work out when you need to use asynchronous versions, and when you don’t.

For example, here’s a valid asynchronous query:

user = await User.objects.filter (username=my_input).afirst()

filter) returns a queryset, and so it’s fine to keep chaining it inside an asynchronous environment, whereas
first () evaluates and returns a model instance - thus, we change to afirst (), and use await at the front

of the whole expression in order to call it in an asynchronous-friendly way.

152 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

O Note

If you forget to put the await part in, you may see errors like “coroutine object has no attribute x” or
“<coroutine. ..>” strings in place of your model instances. If you ever see these, you are missing an await

somewhere to turn that coroutine into a real value.

Transactions

Transactions are not currently supported with asynchronous queries and updates. You will find that trying

to use one raises SynchronousOnlyOperation.

If you wish to use a transaction, we suggest you write your ORM code inside a separate, synchronous function
and then call that using sync_to_async - see Asynchronous support for more.
Querying JSONField

Lookups implementation is different in JSONField, mainly due to the existence of key transformations. To

demonstrate, we will use the following example model:

from django.db import models

class Dog(models.Model) :
name = models.CharField(max_length=200)
data = models.JSONField(null=True)

def __str__(DE:

return .name

Storing and querying for None

As with other fields, storing None as the field’s value will store it as SQL NULL. While not recommended, it is
possible to store JSON scalar null instead of SQL NULL by using Value (None, JSONField()).

Whichever of the values is stored, when retrieved from the database, the Python representation of the JSON

scalar null is the same as SQL NULL, i.e. None. Therefore, it can be hard to distinguish between them.

This only applies to None as the top-level value of the field. If None is inside a 1ist or dict, it will always be
interpreted as JSON null.

When querying, None value will always be interpreted as JSON null. To query for SQL NULL, use isnull:

>>> Dog.objects.create(name="Max", data=None)

<Dog: Max>

(continues on next page)

3.2. Models and databases 153

Django Documentation, Release 5.2.7.dev20250917080137

>>> Dog.objects

<Dog: Archie>

>>> Dog.objects.filter (data=None)

<QuerySet [<Dog:
>>> Dog.objects.filter (data=Value(None, JSONField()))

<QuerySet [<Dog:

Archie>]>

Archie>]>

>>> Dog.objects.filter(data__isnull=True)

<QuerySet [<Dog:

Max>]>

>>> Dog.objects.filter(data__isnull=False)

<QuerySet [<Dog:

Archie>]>

.create(name="Archie", data=Value(None, JSONField()))

(continued from previous page)

JSON null.

Unless you are sure you wish to work with SQL NULL values, consider setting null=False and providing a

suitable default for empty values, such as default=dict.

O Note

Storing JSON scalar null does not violate null=False.

Key, index, and path transforms

To query based on a given dictionary key, use that key as the lookup name:

>>> Dog.objects.create(

)

name="Rufus",
data={
"breed": "labrador",
"owner": {
"name": "Bob",
"other_pets": [

{

"name": "Fishy",

I
T,

<Dog: Rufus>

>>> Dog.objects.create(name="lMeg", data={"breed":

<Dog: Meg>

>>> Dog.objects.filter(data__breed="collie")

"collie", "owner": None})

(continues on next page)

154

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

<QuerySet [<Dog: Meg>]>

Multiple keys can be chained together to form a path lookup:

>>> Dog.objects.filter(data__owner__name="Bob")

<QuerySet [<Dog: Rufus>]>

If the key is an integer, it will be interpreted as an index transform in an array:

>>> Dog.objects.filter(data__owner__other_pets__0__name="Fishy")
<QuerySet [<Dog: Rufus>]>

If the key you wish to query by clashes with the name of another lookup, use the contains lookup instead.

To query for missing keys, use the isnull lookup:

>>> Dog.objects.create(name="Shep", data={"breed": "collie"})
<Dog: Shep>
>>> Dog.objects.filter(data__owner__isnull=True)

<QuerySet [<Dog: Shep>]>

O Note

The lookup examples given above implicitly use the ezact lookup. Key, index, and path transforms
can also be chained with: 4icontains, endswith, iendswith, iezact, regez, iregez, startswith,

istartswith, lt, Lte, gt,and gte, as well as with Containment and key lookups.

KT () expressions

class KT (lookup)

Represents the text value of a key, index, or path transform of JSONField. You can use the double

underscore notation in lookup to chain dictionary key and index transforms.

For example:

(

>>> from django.db.models.fields.json import KT
>>> Dog.objects.create(
name="Shep",
data={
"owner": {"name": "Bob"},

"breed": ["collie", "lhasa apso"],

I

(continues on next page)

3.2. Models and databases 155

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
)
<Dog: Shep>
>>> Dog.objects.annotate(
first_breed=KT('"data_ breed_ _1"), owner_name=KT("'data owner _name"
.).filter(first_breed__startswith="lhasa'", owner_name='"Bob'")

<QuerySet [<Dog: Shep>]>

L

O Note

Due to the way in which key-path queries work, ezclude () and filter() are not guaranteed to produce

exhaustive sets. If you want to include objects that do not have the path, add the isnull lookup.

A Warning

Since any string could be a key in a JSON object, any lookup other than those listed below will be inter-
preted as a key lookup. No errors are raised. Be extra careful for typing mistakes, and always check your

queries work as you intend.

©® MariaDB and Oracle users

Using order_by () on key, index, or path transforms will sort the objects using the string representation

of the values. This is because MariaDB and Oracle Database do not provide a function that converts JSON

values into their equivalent SQL values.

© Oracle users

On Oracle Database, using None as the lookup value in an ezclude () query will return objects that do not
have null as the value at the given path, including objects that do not have the path. On other database
backends, the query will return objects that have the path and the value is not null.

© PostgreSQL users

On PostgreSQL, if only one key or index is used, the SQL operator —> is used. If multiple operators are

used then the #> operator is used.

156 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

© SQLite users

On SQLite, "true", "false", and "null" string values will always be interpreted as True, False, and

JSON null respectively.

Containment and key lookups
contains

The contains lookup is overridden on JSONField. The returned objects are those where the given dict of

key-value pairs are all contained in the top-level of the field. For example:

>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})

<Dog: Rufus>

>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner'": "Bob"})
<Dog: Meg>
>>> Dog.objects.create(name="Fred", data={})
<Dog: Fred>
>>> Dog.objects.create(
name="Merry", data={"breed": "pekingese", "tricks": ["fetch", "dance"]}
)
>>> Dog.objects.filter(data__contains={"owner": "Bob"})

<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

>>> Dog.objects.filter(data__contains={"breed": "collie"})
<QuerySet [<Dog: Meg>]>

>>> Dog.objects.filter(data__contains={"tricks": ["dance"]})
<QuerySet [<Dog: Merry>]>

© Oracle and SQLite

contains is not supported on Oracle and SQLite.

contained_by

This is the inverse of the contains lookup - the objects returned will be those where the key-value pairs on

the object are a subset of those in the value passed. For example:

>>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
<Dog: Rufus>

>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>

(continues on next page)

3.2. Models and databases 157

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> Dog.objects.create(name="Fred", data={})
<Dog: Fred>
>>> Dog.objects.create(
name="Merry", data={"breed": "pekingese", "tricks": ["fetch", "dance"l}
)
>>> Dog.objects.filter(data__contained_by={"breed": "collie", "owner'": "Bob"})
<QuerySet [<Dog: Meg>, <Dog: Fred>]>
>>> Dog.objects.filter(data__contained_by={"breed": "collie"})
<QuerySet [<Dog: Fred>]>
>>> Dog.objects.filter(
data__contained_by={"breed": "pekingese", "tricks": ["dance", "fetch", "hug"]}
)
<QuerySet [<Dog: Merry>, <Dog: Fred>]>

© Oracle and SQLite

contained_by is not supported on Oracle and SQLite.

has_key

Returns objects where the given key is in the top-level of the data. For example:

>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})

<Dog: Rufus>

>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner'": "Bob"})
<Dog: Meg>

>>> Dog.objects.filter(data__has_key="owner"

<QuerySet [<Dog: Meg>]>

has_keys

Returns objects where all of the given keys are in the top-level of the data. For example:

>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})

<Dog: Rufus>

>>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
<Dog: Meg>

>>> Dog.objects.filter(data__has_keys=["breed", "owner"])

<QuerySet [<Dog: Meg>]>

158 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

has_any_keys

Returns objects where any of the given keys are in the top-level of the data. For example:

>>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
<Dog: Rufus>

>>> Dog.objects.create(name="Meg", data={"owner": "Bob"})

<Dog: Meg>

>>> Dog.objects.filter(data__has_any_keys=["owner", "breed"])

<QuerySet [<Dog: Rufus>, <Dog: Meg>]>

Complex lookups with Q objects

Keyword argument queries —in filter(), etc. —are “AND”ed together. If you need to execute more complex

queries (for example, queries with OR statements), you can use § objects.

A G object(django.db.models.Q)isan object used to encapsulate a collection of keyword arguments. These

keyword arguments are specified as in “Field lookups” above.

For example, this Q object encapsulates a single LIKE query:

from django.db.models import Q

Q(question__startswith="What'")

Q objects can be combined using the &, |, and ~ operators. When an operator is used on two Q objects, it yields

a new Q object.

For example, this statement yields a single Q object that represents the ¢“OR” of two

"question__startswith" queries:

‘ Q(question__startswith="Who") | Q(question__startswith="What")

This is equivalent to the following SQL WHERE clause:

‘WHERE question LIKE 'Who’' OR question LIKE 'WhatJ,'

You can compose statements of arbitrary complexity by combining Q objects with the &, |, and ~ operators
and use parenthetical grouping. Also, Q objects can be negated using the ~ operator, allowing for combined

lookups that combine both a normal query and a negated (NOT) query:

Q(question__startswith="Who") | ~Q(pub_date__year=2005)

Each lookup function that takes keyword-arguments (e.g. filter(), ezclude(), get ()) can also be passed
one or more Q objects as positional (not-named) arguments. If you provide multiple Q object arguments to a

lookup function, the arguments will be “AND”ed together. For example:

3.2. Models and databases 159

Django Documentation, Release 5.2.7.dev20250917080137

Poll.objects.get(
Q(question__startswith="Who"),
Q(pub_date=date (2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),

... roughly translates into the SQL:

SELECT * from polls WHERE question LIKE 'Who,'
AND (pub_date = '2005-05-02' OR pub_date = '2005-05-06"')

Lookup functions can mix the use of Q objects and keyword arguments. All arguments provided to a lookup
function (be they keyword arguments or Q objects) are “AND”ed together. However, if a Q object is provided,

it must precede the definition of any keyword arguments. For example:

Poll.objects.get(
Q(pub_date=date (2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),

question__startswith="Who",

... would be a valid query, equivalent to the previous example; but:

Poll.objects.get(
question__startswith="Who",
Q(pub_date=date (2005, 5, 2)) | Q(pub_date=date(2005, 5, 6)),

... would not be valid.

> See also

The OR lookups examples in Django’s unit tests show some possible uses of Q.

Comparing objects

To compare two model instances, use the standard Python comparison operator, the double equals sign: ==.

Behind the scenes, that compares the primary key values of two models.

Using the Entry example above, the following two statements are equivalent:

>>> some_entry == other_entry

>>> some_entry.id == other_entry.id

160 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

If a model’s primary key isn’t called id, no problem. Comparisons will always use the primary key, whatever

it’s called. For example, if a model’s primary key field is called name, these two statements are equivalent:

>>> some_obj == other_obj

>>> some_obj.name == other_obj.name

Deleting objects

The delete method, conveniently, is named delete (). This method immediately deletes the object and re-

turns the number of objects deleted and a dictionary with the number of deletions per object type. Example:

>>> e.delete()
(1, {'blog.Entry': 1})

You can also delete objects in bulk. Every guerySet has a delete () method, which deletes all members of
that QuerySet.

For example, this deletes all Entry objects with a pub_date year of 2005:

>>> Entry.objects.filter(pub_date__year=2005) .delete()
(6, {'webapp.Entry': 53})

Keep in mind that this will, whenever possible, be executed purely in SQL, and so the delete() methods
of individual object instances will not necessarily be called during the process. If you’ve provided a custom
delete () method on a model class and want to ensure that it is called, you will need to “manually” delete
instances of that model (e.g., by iterating over a QuerySet and calling delete () on each object individually)
rather than using the bulk delete () method of a QuerySet.

When Django deletes an object, by default it emulates the behavior of the SQL constraint ON DELETE CASCADE
—in other words, any objects which had foreign keys pointing at the object to be deleted will be deleted along

with it. For example:

b = Blog.objects.get (pk=1)

b.delete()

This cascade behavior is customizable via the on_delete argument to the Foreignkey.

Note that delete() is the only GuerySet method that is not exposed on a Manager itself. This is a safety
mechanism to prevent you from accidentally requesting Entry.objects.delete (), and deleting all the en-

tries. If you do want to delete all the objects, then you have to explicitly request a complete query set:

Entry.objects.all() .delete()

3.2. Models and databases 161

Django Documentation, Release 5.2.7.dev20250917080137

Copying model instances

Although there is no built-in method for copying model instances, it is possible to easily create new instance
with all fields’ values copied. In the simplest case, you can set pk to None and _state.adding to True. Using

our blog example:

blog = Blog(name="My blog", tagline="Blogging is easy")
blog.save()

blog.pk = None
blog._state.adding = True
blog.save()

Things get more complicated if you use inheritance. Consider a subclass of Blog:

class ThemeBlog(Blog) :
theme = models.CharField(max_length=200)

django_blog = ThemeBlog(name="Django", tagline="Django is easy'", theme="python'")
django_blog.save ()

Due to how inheritance works, you have to set both pk and id to None, and _state.adding to True:

django_blog.pk = None

django_blog.id = None
django_blog._state.adding = True

django_blog.save ()

This process doesn’t copy relations that aren’t part of the model’s database table. For example, Entry has a
ManyToManyField to Author. After duplicating an entry, you must set the many-to-many relations for the

new entry:

entry = Entry.objects.all() [0]
old_authors = entry.authors.all()
entry.pk = None
entry._state.adding = True
entry.save ()

entry.authors.set (old_authors)

For a OneToOneField, you must duplicate the related object and assign it to the new object’s field to avoid

violating the one-to-one unique constraint. For example, assuming entry is already duplicated as above:

162 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

detail = EntryDetail.objects.all() [0]
detail.pk = None

detail._state.adding = True
detail.entry = entry

detail.save()

Updating multiple objects at once

Sometimes you want to set a field to a particular value for all the objects in a QuerySet. You can do this with
the update () method. For example:

Entry.objects.filter(pub_date__year=2007) .update (headline="Everything is the same'")

You can only set non-relation fields and ForeignKey fields using this method. To update a non-relation field,
provide the new value as a constant. To update ForeignKey fields, set the new value to be the new model

instance you want to point to. For example:

>>> b = Blog.objects.get (pk=1)

Change every Entry so that it belongs to this Blog.
>>> Entry.objects.update(blog=b)

The update () method is applied instantly and returns the number of rows matched by the query (which may
not be equal to the number of rows updated if some rows already have the new value). The only restriction
on the QuerySet being updated is that it can only access one database table: the model’s main table. You

can filter based on related fields, but you can only update columns in the model’s main table. Example:

>>> b = Blog.objects.get (pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.filter(blog=b) .update(headline="Everything is the same')

Be aware that the update () method is converted directly to an SQL statement. It is a bulk operation for
direct updates. It doesn’t run any save() methods on your models, or emit the pre_save or post_save
signals (which are a consequence of calling save (D), or honor the auto_now field option. If you want to save
every item in a QuerySet and make sure that the save () method is called on each instance, you don’t need

any special function to handle that. Loop over them and call save ():

for item in my_queryset:

item.save()

Calls to update can also use F ezpressions to update one field based on the value of another field in the

3.2. Models and databases 163

Django Documentation, Release 5.2.7.dev20250917080137

model. This is especially useful for incrementing counters based upon their current value. For example, to

increment the pingback count for every entry in the blog;:

>>> Entry.objects.update (number_of_pingbacks=F("number of pingbacks") + 1)

However, unlike F () objects in filter and exclude clauses, you can’t introduce joins when you use F () objects
in an update — you can only reference fields local to the model being updated. If you attempt to introduce a

join with an F() object, a FieldError will be raised:

This will raise a FieldError

>>> Entry.objects.update(headline=F("blog__name"))

Related objects

When you define a relationship in a model (i.e., a ForeignKkey, OneToOneField, or ManyToManyField), in-

stances of that model will have a convenient API to access the related object(s).

Using the models at the top of this page, for example, an Entry object e can get its associated Blog object by
accessing the blog attribute: e.blog.

(Behind the scenes, this functionality is implemented by Python descriptors. This shouldn’t really matter to

you, but we point it out here for the curious.)

Django also creates APT accessors for the “other” side of the relationship — the link from the related model to
the model that defines the relationship. For example, a Blog object b has access to a list of all related Entry
objects via the entry_set attribute: b.entry_set.all().

All examples in this section use the sample Blog, Author and Entry models defined at the top of this page.
One-to-many relationships
Forward

If a model has a ForeignKey, instances of that model will have access to the related (foreign) object via an
attribute of the model.

Example:

>>> e = Entry.objects.get(id=2)

>>> e.blog

You can get and set via a foreign-key attribute. As you may expect, changes to the foreign key aren’t saved

to the database until you call save (). Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = some_blog

>>> e.save()

164 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

If a ForeignKey field hasnull=True set (i.e., it allows NULL values), you can assign None to remove the relation.

Example:

>>> e = Entry.objects.get(id=2)
>>> e.blog = None

>>> e.save()

Forward access to one-to-many relationshipsis cached the first time the related object is accessed. Subsequent

accesses to the foreign key on the same object instance are cached. Example:

>>> e = Entry.objects.get (id=2)
>>> (e.blog)
>>> (e.blog)

Note that the select_related() QuerySet method recursively prepopulates the cache of all one-to-many

relationships ahead of time. Example:

>>> e = Entry.objects.select_related().get(id=2)
>>> (e.blog)
>>> (e.blog)

Following relationships “backward”

If amodel has a ForeignKey, instances of the foreign-key model will have access to a Manager that returns all
instances of the first model. By default, this Manager is named FO0_set, where FOO is the source model name,
lowercased. This Manager returns QuerySet instances, which can be filtered and manipulated as described

in the “Retrieving objects” section above.

Example:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.all()

b.entry_set is a Manager that returns QuerySets.
>>> b.entry_set.filter(headline__contains="Lennon")

>>> b.entry_set.count ()

You can override the FOO_set name by setting the related_name parameter in the ForeignKey definition.
For example, if the Entry model was altered to blog = ForeignKey(Blog, on_delete=models.CASCADE,

related_name='entries'), the above example code would look like this:

>>> b = Blog.objects.get(id=1)
>>> b.entries.all()

(continues on next page)

3.2. Models and databases 165

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

b.entries is a Manager that returns ~“QuerySet = instances.
>>> b.entries.filter (headline__contains='"lLennon")

>>> b.entries.count ()

Using a custom reverse manager

By default the RelatedManager used for reverse relations is a subclass of the default manager for that model.

If you would like to specify a different manager for a given query you can use the following syntax:

from django.db import models

class Entry(models.Model):

objects = models.Manager ()

entries = EntryManager ()

b = Blog.objects.get (id=1)

b.entry_set (manager="entries").all()

If EntryManager performed default filtering in its get _queryset () method, that filtering would apply to the
all() call.

Specifying a custom reverse manager also enables you to call its custom methods:

b.entry_set(manager="entries").is_published()

© Interaction with prefetching

When calling prefetch_related () with a reverse relation, the default manager will be used. If you want

to prefetch related objects using a custom reverse manager, use Prefetch (). For example:

from django.db.models import Prefetch

prefetch_manager = Prefetch('entry_set", queryset=Entry.entries.all())

Blog.objects.prefetch_related(prefetch_manager)

166 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Additional methods to handle related objects

In addition to the GuerySet methods defined in “Retrieving objects” above, the ForeignKey Manager has
additional methods used to handle the set of related objects. A synopsis of each is below, and complete

details can be found in the related objects reference.

add(obj1l, obj2, ...)
Adds the specified model objects to the related object set.

create (x*kwargs)

Creates a new object, saves it and puts it in the related object set. Returns the newly created object.

remove(objl, obj2, ...)

Removes the specified model objects from the related object set.

clear()

Removes all objects from the related object set.

set (objs)
Replace the set of related objects.

To assign the members of a related set, use the set() method with an iterable of object instances. For

example, if el and e2 are Entry instances:

b = Blog.objects.get(id=1)
b.entry_set.set([el, e2])

If the clear () method is available, any preexisting objects will be removed from the entry_set before all
objects in the iterable (in this case, a list) are added to the set. If the clear () method is not available, all

objects in the iterable will be added without removing any existing elements.

Each “reverse” operation described in this section has an immediate effect on the database. Every addition,

creation and deletion is immediately and automatically saved to the database.

Many-to-many relationships

Both ends of a many-to-many relationship get automatic APT access to the other end. The API works similar

to a “backward” one-to-many relationship, above.

One difference is in the attribute naming: The model that defines the ManyToManyField uses the attribute
name of that field itself, whereas the “reverse” model uses the lowercased model name of the original model,

plus ' _set' (just like reverse one-to-many relationships).

An example makes this easier to understand:

e = Entry.objects.get(id=3)
e.authors.all()

e.authors.count ()

(continues on next page)

3.2. Models and databases 167

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

e.authors.filter(name__contains="John")

a = Author.objects.get(id=5)
a.entry_set.all()

Like ForeignKey, ManyToManyField can specify related_name. In the above example, if the
ManyToManyField in Entry had specified related_name='entries', then each Author instance would have

an entries attribute instead of entry_set.

Another difference from one-to-many relationships is that in addition to model instances, the add (), set (),
and remove () methods on many-to-many relationships accept primary key values. For example, if e1 and

e2 are Entry instances, then these set () calls work identically:

a = Author.objects.get(id=5)
a.entry_set.set([el, e2])
a.entry_set.set([el.pk, e2.pk])

One-to-one relationships

One-to-one relationships are very similar to many-to-one relationships. If you define a OneToOneField on

your model, instances of that model will have access to the related object via an attribute of the model.

For example:

class EntryDetail (models.Model):
entry = models.OneToOneField(Entry, on_delete=models.CASCADE)
details = models.TextField()

ed = EntryDetail.objects.get (id=2)
ed.entry

The difference comes in “reverse” queries. The related model in a one-to-one relationship also has access to

a Manager object, but that Manager represents a single object, rather than a collection of objects:

e = Entry.objects.get(id=2)

e.entrydetail

If no object has been assigned to this relationship, Django will raise a DoesNotExist exception.

Instances can be assigned to the reverse relationship in the same way as you would assign the forward rela-

tionship:

168 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

e.entrydetail = ed

How are the backward relationships possible?

Other object-relational mappers require you to define relationships on both sides. The Django developers
believe this is a violation of the DRY (Don’t Repeat Yourself) principle, so Django only requires you to define

the relationship on one end.

But how is this possible, given that a model class doesn’t know which other model classes are related to it

until those other model classes are loaded?

The answer lies in the app registry. When Django starts, it imports each application listed in
INSTALLED_APPS, and then the models module inside each application. Whenever a new model class is cre-
ated, Django adds backward-relationships to any related models. If the related models haven’t been imported

yet, Django keeps tracks of the relationships and adds them when the related models eventually are imported.

For this reason, it’s particularly important that all the models you're using be defined in applications listed

in INSTALLED_APPS. Otherwise, backwards relations may not work properly.

Queries over related objects

Queries involving related objects follow the same rules as queries involving normal value fields. When spec-
ifying the value for a query to match, you may use either an object instance itself, or the primary key value
for the object.

For example, if you have a Blog object b with id=5, the following three queries would be identical:

Entry.objects.filter (blog=b)
Entry.objects.filter(blog=b.id)
Entry.objects.filter(blog=5)

Falling back to raw SQL

If you find yourself needing to write an SQL query that is too complex for Django’s database-mapper to
handle, you can fall back on writing SQL by hand. Django has a couple of options for writing raw SQL

queries; see Performing raw SQL queries.

Finally, it’s important to note that the Django database layer is merely an interface to your database. You
can access your database via other tools, programming languages or database frameworks; there’s nothing

Django-specific about your database.

3.2. Models and databases 169

Django Documentation, Release 5.2.7.dev20250917080137

3.2.3 Aggregation

The topic guide on Django’s database-abstraction API described the way that you can use Django queries
that create, retrieve, update and delete individual objects. However, sometimes you will need to retrieve
values that are derived by summarizing or aggregating a collection of objects. This topic guide describes the

ways that aggregate values can be generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are used to track the inventory for

a series of online bookstores:

from django.db import models

class Author (models.Model):
name = models.CharField(max_length=100)
age = models.IntegerField()

class Publisher (models.Model):
name = models.CharField(max_length=300)

class Book(models.Model):
name = models.CharField(max_length=300)
pages = models.IntegerField()
price = models.DecimalField(max_digits=10, decimal_places=2)
rating = models.FloatField()
authors = models.ManyToManyField (Author)
publisher = models.ForeignKey(Publisher, on_delete=models.CASCADE)
pubdate = models.DateField()

class Store(models.Model):
name = models.CharField(max_length=300)
books = models.ManyToManyField(Book)

Cheat sheet

In a hurry? Here’s how to do common aggregate queries, assuming the models above:

Total number of books.
>>> Book.objects.count ()
2452

(continues on next page)

170 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

Total number of books with publisher=BaloneyPress
>>> Book.objects.filter (publisher__name="BaloneyPress").count ()
73

Average price across all books, provide default to be returned instead
of None if no books exist.

>>> from django.db.models import Avg

>>> Book.objects.aggregate (Avg("'price", default=0))

{'price__avg': 34.35}

Max price across all books, provide default to be returned instead of
None if no books exist.

>>> from django.db.models import Max

>>> Book.objects.aggregate(Max("price", default=0))

{'price__max': Decimal('81.20')}

Difference between the highest priced book and the average price of all books.
>>> from django.db.models import FloatField
>>> Book.objects.aggregate(
price_diff=Max("price", output_field=FloatField()) - Avg('price")
)
{'price_diff': 46.85}

All the following queries involve traversing the Book<->Publisher

foreign key relationship backwards.

Each publisher, each with a count of books as a "num_books" attribute.
>>> from django.db.models import Count

>>> pubs = Publisher.objects.annotate (num_books=Count ("book"))

>>> pubs

<QuerySet [<Publisher: BaloneyPress>, <Publisher: SalamiPress>, ...]>
>>> pubs [0] .num_books

73

Each publisher, with a separate count of books with a rating above and below 5
>>> from django.db.models import Q

>>> above_5 = Count("book", filter=Q(book__rating__gt=5))

Count ("book", filter=Q(book__rating__lte=5))

>>> below_5

>>> pubs = Publisher.objects.annotate(below_5=below_5) .annotate(above_b=above_5)

(continues on next page)

3.2. Models and databases 171

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> pubs[0] .above_5
23
>>> pubs[0] .below_5
12

The top 5 publishers, in order by number of books.

>>> pubs = Publisher.objects.annotate(num_books=Count ("book")).order_by("-num_books") [:5]
>>> pubs[0] .num_books

1323

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate summary values over an
entire QuerySet. For example, say you wanted to calculate the average price of all books available for sale.

Django’s query syntax provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that belong to this QuerySet. This is

done by appending an aggregate () clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all() .aggregate (Avg("price"))
{'price__avg': 34.35}

The all() is redundant in this example, so this could be simplified to:

>>> Book.objects.aggregate (Avg("price"))
{'price__avg': 34.35}

The argument to the aggregate() clause describes the aggregate value that we want to compute - in this
case, the average of the price field on the Book model. A list of the aggregate functions that are available

can be found in the QuerySet reference.

aggregate() is a terminal clause for a QuerySet that, when invoked, returns a dictionary of name-value
pairs. The name is an identifier for the aggregate value; the value is the computed aggregate. The name is
automatically generated from the name of the field and the aggregate function. If you want to manually
specify a name for the aggregate value, you can do so by providing that name when you specify the aggregate

clause:

>>> Book.objects.aggregate (average_price=Avg("price"))

{'average_price': 34.35}

172 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

If you want to generate more than one aggregate, you add another argument to the aggregate () clause. So,

if we also wanted to know the maximum and minimum price of all books, we would issue the query:

>>> from django.db.models import Avg, Max, Min
>>> Book.objects.aggregate(Avg("price"), Max("price"), Min("price"))
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent summary for each object in a
QuerySet. For example, if you are retrieving a list of books, you may want to know how many authors con-
tributed to each book. Each Book has a many-to-many relationship with the Author; we want to summarize
this relationship for each book in the QuerySet.

Per-object summaries can be generated using the annotate () clause. When an annotate () clause is specified,

each object in the QuerySet will be annotated with the specified values.

The syntax for these annotations is identical to that used for the aggregate () clause. Each argument to
annotate () describes an aggregate that is to be calculated. For example, to annotate books with the number

of authors:

Build an annotated queryset

>>> from django.db.models import Count

>>> q = Book.objects.annotate(Count("authors"))
Interrogate the first object in the queryset

>>> q[0]

<Book: The Definitive Guide to Django>

>>> q[0] .authors__count

2

Interrogate the second object in the queryset
>>> ql1]

<Book: Practical Django Projects>

>>> q[1] .authors__count

1

As with aggregate (), the name for the annotation is automatically derived from the name of the aggregate
function and the name of the field being aggregated. You can override this default name by providing an

alias when you specify the annotation:

>>> q = Book.objects.annotate(num_authors=Count ("authors"))
>>> q[0] .num_authors
2

>>> q[1] .num_authors

(continues on next page)

3.2. Models and databases 173

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

Unlike aggregate (), annotate () isnot a terminal clause. The output of the annotate () clauseisa QuerySet;
this QuerySet can be modified using any other QuerySet operation, including filter (), order_by(), or even

additional calls to annotate().

Combining multiple aggregations

Combining multiple aggregations with annotate () will yield the wrong results because joins are used instead

of subqueries:

>>> book = Book.objects.first()
>>> book.authors.count ()
2

>>> book.store_set.count ()

>>> q = Book.objects.annotate(Count ("authors"), Count("store"))

>>> q[0] .authors__count

>>> q[0] .store__count

For most aggregates, there is no way to avoid this problem, however, the Count aggregate has a distinct

parameter that may help:

>>> q = Book.objects.annotate(
Count ("authors'", distinct=True), Count("store'", distinct=True)
)
>>> q[0] .authors__count
2
>>> q[0] .store__count
3

© If in doubt, inspect the SQL query!

In order to understand what happens in your query, consider inspecting the query property of your

QuerySet.

174 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Joins and aggregates

So far, we have dealt with aggregates over fields that belong to the model being queried. However, sometimes

the value you want to aggregate will belong to a model that is related to the model you are querying.

When specifying the field to be aggregated in an aggregate function, Django will allow you to use the same
double underscore notation that is used when referring to related fields in filters. Django will then handle

any table joins that are required to retrieve and aggregate the related value.

For example, to find the price range of books offered in each store, you could use the annotation:

>>> from django.db.models import Max, Min

>>> Store.objects.annotate(min_price=Min("books__price"), max_price=Max("books__price"))

This tells Django to retrieve the Store model, join (through the many-to-many relationship) with the Book

model, and aggregate on the price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate () clause. If you wanted to know the lowest and highest price of any

book that is available for sale in any of the stores, you could use the aggregate:

‘>>> Store.objects.aggregate (min_price=Min("books_ _price"), max_price=Max("books_ _price'"))

Join chains can be as deep as you require. For example, to extract the age of the youngest author of any

book available for sale, you could issue the query:

‘ >>> Store.objects.aggregate (youngest_age=Min("books__authors__age")) ’

Following relationships backwards

In a way similar to Lookups that span relationships, aggregations and annotations on fields of models or
models that are related to the one you are querying can include traversing “reverse” relationships. The

lowercase name of related models and double-underscores are used here too.

For example, we can ask for all publishers, annotated with their respective total book stock counters (note

how we use 'book' to specify the Publisher -> Book reverse foreign key hop):

>>> from django.db.models import Avg, Count, Min, Sum

>>> Publisher.objects.annotate(Count ("book"))

(Every Publisher in the resulting QuerySet will have an extra attribute called book__count.)

We can also ask for the oldest book of any of those managed by every publisher:

>>> Publisher.objects.aggregate(oldest_pubdate=Min("book_ _pubdate"))

(The resulting dictionary will have a key called 'oldest_pubdate'. If no such alias were specified, it would

be the rather long 'book__pubdate__min'.)

3.2. Models and databases 175

Django Documentation, Release 5.2.7.dev20250917080137

This doesn’t apply just to foreign keys. It also works with many-to-many relations. For example, we can
ask for every author, annotated with the total number of pages considering all the books the author has

(co-)authored (note how we use 'book' to specify the Author -> Book reverse many-to-many hop):

>>> Author.objects.annotate(total_pages=Sum("book_ _pages"))

(Every Author in the resulting QuerySet will have an extra attribute called total_pages. If no such alias

were specified, it would be the rather long book__pages__sum.)

Or ask for the average rating of all the books written by author(s) we have on file:

>>> Author.objects.aggregate (average_rating=Avg('book _rating"))

(The resulting dictionary will have a key called 'average_rating'. If no such alias were specified, it would

be the rather long 'book__rating__avg'.)

Aggregations and other QuerySet clauses

filter() and exclude()

Aggregates can also participate in filters. Any filter () (or exclude()) applied to normal model fields will

have the effect of constraining the objects that are considered for aggregation.

When used with an annotate () clause, a filter has the effect of constraining the objects for which an anno-
tation is calculated. For example, you can generate an annotated list of all books that have a title starting

with “Django” using the query:

>>> from django.db.models import Avg, Count

>>> Book.objects.filter (name__startswith="Django") .annotate (num_authors=Count ("authors"))

When used with an aggregate() clause, a filter has the effect of constraining the objects over which the
aggregate is calculated. For example, you can generate the average price of all books with a title that starts

with “Django” using the query:

>>> Book.objects.filter(name__startswith="Django") .aggregate(Avg("price"))

Filtering on annotations

Annotated values can also be filtered. The alias for the annotation can be used in filter () and exclude()

clauses in the same way as any other model field.

For example, to generate a list of books that have more than one author, you can issue the query:

>>> Book.objects.annotate (num_authors=Count ("authors")) .filter (num_authors__gt=1)

This query generates an annotated result set, and then generates a filter based upon that annotation.

176 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

If you need two annotations with two separate filters you can use the filter argument with any aggregate.

For example, to generate a list of authors with a count of highly rated books:

>>> highly_rated = Count('"book", =Q(book__rating__gte=7))
>>> Author.objects.annotate (num_books=Count ("book"), highly rated_books=highly_rated)

Each Author in the result set will have the num_books and highly_rated_books attributes. See also Condi-

tional aggregation.

O Choosing between filter and QuerySet.filter ()

Avoid using the filter argument with a single annotation or aggregation. It’s more efficient to use
QuerySet.filter() to exclude rows. The aggregation filter argument is only useful when using two

or more aggregations over the same relations with different conditionals.

Order of annotate() and filter() clauses

When developing a complex query that involves both annotate() and filter () clauses, pay particular

attention to the order in which the clauses are applied to the QuerySet.

When an annotate() clause is applied to a query, the annotation is computed over the state of the query
up to the point where the annotation is requested. The practical implication of this is that filter () and

annotate () are not commutative operations.

Given:
e Publisher A has two books with ratings 4 and 5.
¢ Publisher B has two books with ratings 1 and 4.
o Publisher C has one book with rating 1.

Here’s an example with the Count aggregate:

>>> a, b = Publisher.objects.annotate(num_books=Count ("book", distinct=True)).filter(
book__rating__gt=3.0
)
>>> a, a.num_books
(<Publisher: A>, 2)
>>> b, b.num_books

(<Publisher: B>, 2)

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0) .annotate(num_books=Count ("book
K‘)u))
>>> a, a.num_books

(continues on next page)

3.2. Models and databases 177

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
(<Publisher: A>, 2)
>>> b, b.num_books

(<Publisher: B>, 1)

Both queries return a list of publishers that have at least one book with a rating exceeding 3.0, hence publisher
Cis excluded.

In the first query, the annotation precedes the filter, so the filter has no effect on the annotation.

distinct=True is required to avoid a query bug.

The second query counts the number of books that have a rating exceeding 3.0 for each publisher. The filter

precedes the annotation, so the filter constrains the objects considered when calculating the annotation.

Here’s another example with the Avg aggregate:

>>> a, b = Publisher.objects.annotate(avg_rating=Avg('book_ _rating")).filter(
book__rating_ _gt=3.0
)
>>> a, a.avg_rating
(<Publisher: A>, 4.5) # (5+4)/2
>>> b, b.avg_rating
(<Publisher: B>, 2.5) # (1+4)/2

>>> a, b = Publisher.objects.filter(book__rating__gt=3.0) .annotate(
avg_rating=Avg("book _rating")
o)
>>> a, a.avg_rating
(<Publisher: A>, 4.5) # (5+4)/2
>>> b, b.avg_rating
(<Publisher: B>, 4.0) # 4/1 (book with rating 1 excluded)

The first query asks for the average rating of all a publisher’s books for publisher’s that have at least one
book with a rating exceeding 3.0. The second query asks for the average of a publisher’s book’s ratings for

only those ratings exceeding 3.0.

It’s difficult to intuit how the ORM will translate complex querysets into SQL queries so when in doubt,

inspect the SQL with str(queryset.query) and write plenty of tests.

order_by()

Annotations can be used as a basis for ordering. When you define an order_by () clause, the aggregates you

provide can reference any alias defined as part of an annotate () clause in the query.

For example, to order a QuerySet of books by the number of authors that have contributed to the book, you

could use the following query:

178 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> Book.objects.annotate (num_authors=Count ("authors")).order_by("num_authors")

values ()

Ordinarily, annotations are generated on a per-object basis - an annotated QuerySet will return one result for
each object in the original QuerySet. However, when a values () clause is used to constrain the columns that
are returned in the result set, the method for evaluating annotations is slightly different. Instead of returning
an annotated result for each result in the original QuerySet, the original results are grouped according to the
unique combinations of the fields specified in the values () clause. An annotation is then provided for each

unique group; the annotation is computed over all members of the group.

For example, consider an author query that attempts to find out the average rating of books written by each

author:

>>> Author.objects.annotate(average_rating=Avg("book_ _rating"))

This will return one result for each author in the database, annotated with their average book rating.

However, the result will be slightly different if you use a values () clause:

>>> Author.objects.values("name").annotate(average_rating=Avg('"book_ _rating"))

In this example, the authors will be grouped by name, so you will only get an annotated result for each unique
author name. This means if you have two authors with the same name, their results will be merged into a
single result in the output of the query; the average will be computed as the average over the books written
by both authors.

Order of annotate() and values() clauses

As with the filter () clause, the order in which annotate() and values() clauses are applied to a query
is significant. If the values() clause precedes the annotate(), the annotation will be computed using the

grouping described by the values () clause.

However, if the annotate () clause precedes the values() clause, the annotations will be generated over the

entire query set. In this case, the values () clause only constrains the fields that are generated on output.

For example, if we reverse the order of the values() and annotate () clause from our previous example:

>>> Author.objects.annotate(average_rating=Avg("book _rating")).values(

"name", "average_rating"

This will now yield one unique result for each author; however, only the author’s name and the

average_rating annotation will be returned in the output data.

3.2. Models and databases 179

Django Documentation, Release 5.2.7.dev20250917080137

You should also note that average_rating has been explicitly included in the list of values to be returned.

This is required because of the ordering of the values() and annotate() clause.

If the values () clause precedes the annotate () clause, any annotations will be automatically added to the
result set. However, if the values() clause is applied after the annotate() clause, you need to explicitly

include the aggregate column.

Interaction with order_by ()

Fields that are mentioned in the order_by() part of a queryset are used when selecting the output data,
even if they are not otherwise specified in the values() call. These extra fields are used to group “like”
results together and they can make otherwise identical result rows appear to be separate. This shows up,

particularly, when counting things.

By way of example, suppose you have a model like this:

from django.db import models

class Item(models.Model):
name = models.CharField(max_length=10)
data = models.IntegerField()

If you want to count how many times each distinct data value appears in an ordered queryset, you might
try this:

items = Item.objects.order_by('name")

items.values("data") .annotate(Count ("id"))

...which will group the Item objects by their common data values and then count the number of id values
in each group. Except that it won’t quite work. The ordering by name will also play a part in the grouping,
so this query will group by distinct (data, name) pairs, which isn’t what you want. Instead, you should

construct this queryset:

items.values("data") .annotate(Count("id")) .order_by()

...clearing any ordering in the query. You could also order by, say, data without any harmful effects, since

that is already playing a role in the query.

This behavior is the same as that noted in the queryset documentation for distinct () and the general rule
is the same: normally you won’t want extra columns playing a part in the result, so clear out the ordering,

or at least make sure it’s restricted only to those fields you also select in a values () call.

180 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

O Note

You might reasonably ask why Django doesn’t remove the extraneous columns for you. The main reason
is consistency with distinct () and other places: Django never removes ordering constraints that you
have specified (and we can’t change those other methods’ behavior, as that would violate our API stability

policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you define an aggregate () clause,

the aggregates you provide can reference any alias defined as part of an annotate () clause in the query.

For example, if you wanted to calculate the average number of authors per book you first annotate the set

of books with the author count, then aggregate that author count, referencing the annotation field:

>>> from django.db.models import Avg, Count
>>> Book.objects.annotate (num_authors=Count ("authors")) .aggregate (Avg("'num_authors"))

{'num_authors__avg': 1.66%}

Aggregating on empty querysets or groups

When an aggregation is applied to an empty queryset or grouping, the result defaults to its default parameter,
typically None. This behavior occurs because aggregate functions return NULL when the executed query

returns no rows.

You can specify a return value by providing the default argument for most aggregations. However, since

Count does not support the default argument, it will always return 0 for empty querysets or groups.

For example, assuming that no book contains web in its name, calculating the total price for this book set

would return None since there are no matching rows to compute the Sum aggregation on:

>>> from django.db.models import Sum
>>> Book.objects.filter(name__contains="web") .aggregate(Sum("price"))

{"price__sum": None}

However, the default argument can be set when calling Sum to return a different default value if no books

can be found:

>>> Book.objects.filter(name__contains="web") .aggregate(Sum("price", default=0))

{"price__sum": Decimal("0")}

Under the hood, the default argument is implemented by wrapping the aggregate function with Coalesce.

3.2. Models and databases 181

Django Documentation, Release 5.2.7.dev20250917080137

3.2.4 Search

A common task for web applications is to search some data in the database with user input. In a simple case,
this could be filtering a list of objects by a category. A more complex use case might require searching with
weighting, categorization, highlighting, multiple languages, and so on. This document explains some of the

possible use cases and the tools you can use.

We'll refer to the same models used in Making queries.
Use Cases
Standard textual queries

Text-based fields have a selection of matching operations. For example, you may wish to allow lookup up

an author like so:

>>> Author.objects.filter(name__contains="Terry")

[<Author: Terry Gilliam>, <Author: Terry Jones>]

This is a very fragile solution as it requires the user to know an exact substring of the author’s name. A better

approach could be a case-insensitive match (icontains), but this is only marginally better.

A database’s more advanced comparison functions

If you're using PostgreSQL, Django provides a selection of database specific tools to allow you to leverage
more complex querying options. Other databases have different selections of tools, possibly via plugins or
user-defined functions. Django doesn’t include any support for them at this time. We’ll use some examples

from PostgreSQL to demonstrate the kind of functionality databases may have.

© Searching in other databases

All of the searching tools provided by django. contrib.postgres are constructed entirely on public APIs
such as custom lookups and database functions. Depending on your database, you should be able to

construct queries to allow similar APIs. If there are specific things which cannot be achieved this way,

please open a ticket.

In the above example, we determined that a case insensitive lookup would be more useful. When dealing

with non-English names, a further improvement is to use unaccented comparison:

>>> Author.objects.filter(name__unaccent__icontains="Helen")

[<Author: Helen Mirren>, <Author: Helena Bonham Carter>, <Author: Héléne Joy>]

This shows another issue, where we are matching against a different spelling of the name. In this case we
have an asymmetry though - a search for Helen will pick up Helena or Héléne, but not the reverse. Another

option would be to use a trigram_similar comparison, which compares sequences of letters.

182 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

For example:

>>> Author.objects.filter(name__unaccent__lower__trigram_similar="Héléne'")

[<Author: Helen Mirren>, <Author: Héléne Joy>]

Now we have a different problem - the longer name of “Helena Bonham Carter” doesn’t show up as it is much
longer. Trigram searches consider all combinations of three letters, and compares how many appear in both
search and source strings. For the longer name, there are more combinations that don’t appear in the source

string, so it is no longer considered a close match.

The correct choice of comparison functions here depends on your particular data set, for example the lan-
guage(s) used and the type of text being searched. All of the examples we’ve seen are on short strings where

the user is likely to enter something close (by varying definitions) to the source data.

Document-based search

Standard database operations stop being a useful approach when you start considering large blocks of text.
Whereas the examples above can be thought of as operations on a string of characters, full text search looks

at the actual words. Depending on the system used, it’s likely to use some of the following ideas:
¢ Ignoring “stop words” such as “a”, “the”, “and”.
¢ Stemming words, so that “pony” and “ponies” are considered similar.

e Weighting words based on different criteria such as how frequently they appear in the text, or the
importance of the fields, such as the title or keywords, that they appear in.

There are many alternatives for using searching software, some of the most prominent are Elastic and Solr.
These are full document-based search solutions. To use them with data from Django models, you’ll need
a layer which translates your data into a textual document, including back-references to the database ids.
When a search using the engine returns a certain document, you can then look it up in the database. There

are a variety of third-party libraries which are designed to help with this process.

PostgreSQL support

PostgreSQL has its own full text search implementation built-in. While not as powerful as some other search
engines, it has the advantage of being inside your database and so can easily be combined with other rela-

tional queries such as categorization.

The django. contrib.postgres module provides some helpers to make these queries. For example, a query

might select all the blog entries which mention “cheese”:

>>> Entry.objects.filter(body_text__search="cheese")

[<Entry: Cheese on Toast recipes>, <Entry: Pizza recipes>]

You can also filter on a combination of fields and on related models:

3.2. Models and databases 183

Django Documentation, Release 5.2.7.dev20250917080137

>>> Entry.objects.annotate(
search=SearchVector("blog _tagline", "body_ text"),

). filter(search="cheese'")

[
<Entry: Cheese on Toast recipes>,
<Entry: Pizza Recipes>,
<Entry: Dairy farming in Argentina>,
]

See the contrib.postgres Full text search document for complete details.

3.2.5 Managers

class Manager

A Manager is the interface through which database query operations are provided to Django models. At least

one Manager exists for every model in a Django application.

The way Manager classes work is documented in Making queries; this document specifically touches on model

options that customize Manager behavior.

Manager names

By default, Django adds a Manager with the name objects to every Django model class. However, if you
want to use objects as a field name, or if you want to use a name other than objects for the Manager, you
can rename it on a per-model basis. To rename the Manager for a given class, define a class attribute of type

models.Manager () on that model. For example:

from django.db import models

class Person(models.Model):

people = models.Manager ()

Using this example model, Person.objects will generate an AttributeError exception, but Person.

people.all() will provide a list of all Person objects.

Custom managers

You can use a custom Manager in a particular model by extending the base Manager class and instantiating

your custom Manager in your model.

There are two reasons you might want to customize a Manager: to add extra Manager methods, and/or to

modify the initial QuerySet the Manager returns.

184 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Adding extra manager methods

Adding extra Manager methods is the preferred way to add “table-level” functionality to your models. (For
“row-level” functionality —i.e., functions that act on a single instance of a model object — use Model methods,

not custom Manager methods.)

For example, this custom Manager adds a method with_counts():

from django.db import models

from django.db.models.functions import Coalesce

class PollManager (models.Manager) :
def with_counts()

return .annotate (num_responses=Coalesce(models.Count ("response"), 0))

class OpinionPoll (models.Model):
question = models.CharField(max_length=200)
objects = PollManager ()

class Response(models.Model):

poll = models.ForeignKey(OpinionPoll, on_delete=models.CASCADE)

With this example, you’d use OpinionPoll.objects.with_counts () to get a QuerySet of OpinionPoll ob-

jects with the extra num_responses attribute attached.
A custom Manager method can return anything you want. It doesn’t have to return a QuerySet.

Another thing to note is that Manager methods can access self .model to get the model class to which they’re
attached.

Modifying a manager’s initial QuerySet

A Manager’s base QuerySet returns all objects in the system. For example, using this model:

from django.db import models

class Book(models.Model) :
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

3.2. Models and databases 185

Django Documentation, Release 5.2.7.dev20250917080137

.. .the statement Book.objects.all() will return all books in the database.

You can override a Manager’s base QuerySet by overriding the Manager.get_queryset() method.

get_queryset () should return a QuerySet with the properties you require.

For example, the following model has two Managers — one that returns all objects, and one that returns only
the books by Roald Dahl:

class DahlBookManager (models.Manager) :
def get_queryset():
return () .get_queryset () .filter (author="Roald Dahl")

class Book(models.Model):
title = models.CharField(max_length=100)
author = models.CharField(max_length=50)

objects = models.Manager ()

dahl_objects = DahlBookManager ()

With this sample model, Book.objects.all() will return all books in the database, but Book.
dahl_objects.all() will only return the ones written by Roald Dahl.

Because get_queryset () returns a QuerySet object, you can use filter (), exclude() and all the other

QuerySet methods on it. So these statements are all legal:

Book.dahl_objects.all()
Book.dahl_objects.filter(title="Matilda")
Book.dahl_objects.count ()

This example also pointed out another interesting technique: using multiple managers on the same model.
You can attach as many Manager () instances to a model as you’d like. This is a non-repetitive way to define

common “filters” for your models.

For example:

class AuthorManager (models.Manager) :
def get_queryset():
return () .get_queryset () .filter(role="A")

class EditorManager (models.Manager) :

(continues on next page)

186 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
def get_queryset():
return () .get_queryset () .filter(role="E")

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
role = models.CharField(max_length=1, choices={"A": _("Author"), "E": _("Editor")})
people = models.Manager ()
authors = AuthorManager ()

editors = EditorManager ()

This example allows you to request Person.authors.all(), Person.editors.all(), and Person.people.

all(), yielding predictable results.

Default managers
Model._default_manager

If you use custom Manager objects, take note that the first Manager Django encounters (in the order in which
they’re defined in the model) has a special status. Django interprets the first Manager defined in a class as the
“default” Manager, and several parts of Django (including dumpdata) will use that Manager exclusively for
that model. As a result, it’s a good idea to be careful in your choice of default manager in order to avoid a

situation where overriding get_queryset () results in an inability to retrieve objects you’d like to work with.
You can specify a custom default manager using Meta. default_manager_name.

If you're writing some code that must handle an unknown model, for example, in a third-party app that
implements a generic view, use this manager (or _base_manager) rather than assuming the model has an

objects manager.

Base managers

Model._base_manager

Using managers for related object access

By default, Django uses an instance of the Model._base_manager manager class when accessing related ob-
jects (e.g. choice.question), not the _default_manager on the related object. This is because Django needs
to be able to retrieve the related object, even if it would otherwise be filtered out (and hence be inaccessible)

by the default manager.

If the normal base manager class (django.db.models.Manager) isn’t appropriate for your circumstances,

you can tell Django which class to use by setting Meta.base_manager_name.

3.2. Models and databases 187

Django Documentation, Release 5.2.7.dev20250917080137

Base managers aren’t used when querying on related models, or when accessing a one-to-many or
many-to-many relationship. For example, if the Question model from the tutorial had a deleted field
and a base manager that filters out instances with deleted=True, a queryset like Choice.objects.

filter(question__name__startswith='What') would include choices related to deleted questions.

Don'’t filter away any results in this type of manager subclass

This manager is used to access objects that are related to from some other model. In those situations, Django
has to be able to see all the objects for the model it is fetching, so that anything which is referred to can be

retrieved.

Therefore, you should not override get_queryset () to filter out any rows. If you do so, Django will return

incomplete results.

Calling custom QuerySet methods from the manager

While most methods from the standard QuerySet are accessible directly from the Manager, this is only the

case for the extra methods defined on a custom QuerySet if you also implement them on the Manager:

class PersonQuerySet(models.QuerySet):
def authors():

return .filter(role="A")

def editors()8

return .filter(role="E")

class PersonManager(models.Manager) :
def get_queryset():

return PersonQuerySet(.model, using= ._db)

def authors(E

return .get_queryset () .authors ()

def editors(K

return .get_queryset () .editors()

class Person(models.Model):
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50)
role = models.CharField(max_length=1, choices={"A": _("Author"), "E": _("Editor")})

people = PersonManager ()

188 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

This example allows you to call both authors () and editors() directly from the manager Person.people.

Creating a manager with QuerySet methods

In lieu of the above approach which requires duplicating methods on both the QuerySet and the Manager,
QuerySet.as_manager () can be used to create an instance of Manager with a copy of a custom QuerySet’s

methods:

class Person(models.Model):

people = PersonQuerySet.as_manager ()

The Manager instance created by QuerySet.as_manager () will be virtually identical to the PersonManager

from the previous example.

Not every QuerySet method makes sense at the Manager level; for instance we intentionally prevent the

QuerySet.delete () method from being copied onto the Manager class.
Methods are copied according to the following rules:
¢ Public methods are copied by default.
¢ Private methods (starting with an underscore) are not copied by default.
e Methods with a queryset_only attribute set to False are always copied.
¢ Methods with a queryset_only attribute set to True are never copied.

For example:

class CustomQuerySet(models.QuerySet) :
def public_method():

return

def _private_method()

return

def opted_out_public_method(K

return

opted_out_public_method.queryset_only = True

(continues on next page)

3.2. Models and databases 189

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
def _opted_in_private_method()

return

_opted_in_private_method.queryset_only = False

from_queryset ()
classmethod from_queryset (queryset class)

For advanced usage you might want both a custom Manager and a custom QuerySet. You can do that by
calling Manager . from_queryset () which returns a subclass of your base Manager with a copy of the custom

QuerySet methods:

class CustomManager (models.Manager) :
def manager_only_method(DE

return

class CustomQuerySet(models.QuerySet) :
def manager_and_queryset_method():

return

class MyModel (models.Model) :

objects = CustomManager.from_queryset (CustomQuerySet) ()

You may also store the generated class into a variable:

MyManager = CustomManager.from_queryset (CustomQuerySet)

class MyModel (models.Model) :
objects = MyManager ()

Custom managers and model inheritance

Here’s how Django handles custom managers and model inheritance:

1. Managers from base classes are always inherited by the child class, using Python’s normal name res-
olution order (names on the child class override all others; then come names on the first parent class,

and so on).

190 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

2. If no managers are declared on a model and/or its parents, Django automatically creates the objects

manager.

3. The default manager on a class is either the one chosen with Meta. default_manager_name, or the first

manager declared on the model, or the default manager of the first parent model.

These rules provide the necessary flexibility if you want to install a collection of custom managers on a group
of models, via an abstract base class, but still customize the default manager. For example, suppose you have

this base class:

class AbstractBase(models.Model):

objects = CustomManager ()

class Meta:

abstract = True

If you use this directly in a child class, objects will be the default manager if you declare no managers in
the child class:

class ChildA(AbstractBase):

pass

If you want to inherit from AbstractBase, but provide a different default manager, you can provide the

default manager on the child class:

class ChildB(AbstractBase):

default_manager = OtherManager ()

Here, default_manager is the default. The objects manager is still available, since it’s inherited, but isn’t
used as the default.

Finally for this example, suppose you want to add extra managers to the child class, but still use the default
from AbstractBase. You can’t add the new manager directly in the child class, as that would override the
default and you would have to also explicitly include all the managers from the abstract base class. The
solution is to put the extra managers in another base class and introduce it into the inheritance hierarchy
after the defaults:

class ExtraManager (models.Model):

extra_manager = OtherManager ()

(continues on next page)

3.2. Models and databases 191

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

class Meta:

abstract = True

class ChildC(AbstractBase, ExtraManager):

pass

Note that while you can define a custom manager on the abstract model, you can’t invoke any methods using
the abstract model. That is:

‘ ClassA.objects.do_something()

is legal, but:

‘ AbstractBase.objects.do_something()

will raise an exception. This is because managers are intended to encapsulate logic for managing collec-
tions of objects. Since you can’t have a collection of abstract objects, it doesn’t make sense to be managing
them. If you have functionality that applies to the abstract model, you should put that functionality in a

staticmethod or classmethod on the abstract model.

Implementation concerns

Whatever features you add to your custom Manager, it must be possible to make a shallow copy of a Manager

instance; i.e., the following code must work:

>>> import copy
>>> manager = MyManager ()

>>> my_copy = copy.copy(manager)

Django makes shallow copies of manager objects during certain queries; if your Manager cannot be copied,

those queries will fail.

This won’t be an issue for most custom managers. If you are just adding simple methods to your Manager,
it is unlikely that you will inadvertently make instances of your Manager uncopyable. However, if you're
overriding __getattr__ or some other private method of your Manager object that controls object state, you

should ensure that you don’t affect the ability of your Manager to be copied.

192 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

3.2.6 Performing raw SQL queries

Django gives you two ways of performing raw SQL queries: you can use Manager.raw() to perform raw
queries and return model instances, or you can avoid the model layer entirely and execute custom SQL di-

rectly.

© Explore the ORM before using raw SQL!
The Django ORM provides many tools to express queries without writing raw SQL. For example:
¢ The QuerySet API is extensive.

e You can annotate and aggregate using many built-in database functions. Beyond those, you can

create custom query expressions.

Before using raw SQL, explore the ORM. Ask on one of the support channels to see if the ORM supports

your use case.

A Warning

You should be very careful whenever you write raw SQL. Every time you use it, you should properly
escape any parameters that the user can control by using params in order to protect against SQL injection

attacks. Please read more about SQL injection protection.

Performing raw queries
The raw() manager method can be used to perform raw SQL queries that return model instances:

Manager .raw(raw_query, params=(), translations=None)

This method takes a raw SQL query, executes it, and returns a django.db.models.query.RawQuerySet in-

stance. This RawQuerySet instance can be iterated over like a normal QuerySet to provide object instances.

This is best illustrated with an example. Suppose you have the following model:

class Person(models.Model) :
first_name = models.CharField(...)
last_name = models.CharField(...)

birth_date = models.DateField(...)

You could then execute custom SQL like so:

>>> for p in Person.objects.raw("SELECT * FROM myapp_person'):
(®

(continues on next page)

3.2. Models and databases 193

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
John Smith

Jane Jones

This example isn’t very exciting — it’s exactly the same as running Person.objects.all(). However, raw()

has a bunch of other options that make it very powerful.

© Model table names
Where did the name of the Person table come from in that example?

By default, Django figures out a database table name by joining the model’s “app label” — the name
you used in manage.py startapp — to the model’s class name, with an underscore between them. In
the example we’ve assumed that the Person model lives in an app named myapp, so its table would be

myapp_person.

For more details check out the documentation for the db_ table option, which also lets you manually set

the database table name.

A Warning

No checking is done on the SQL statement that is passed in to .raw (). Django expects that the statement
will return a set of rows from the database, but does nothing to enforce that. If the query does not return

rows, a (possibly cryptic) error will result.

A Warning

If you are performing queries on MySQL, note that MySQL’s silent type coercion may cause unexpected
results when mixing types. If you query on a string type column, but with an integer value, MySQL will
coerce the types of all values in the table to an integer before performing the comparison. For example, if
your table contains the values 'abc', 'def' and you query for WHERE mycolumn=0, both rows will match.

To prevent this, perform the correct typecasting before using the value in a query.

Mapping query fields to model fields

raw () automatically maps fields in the query to fields on the model.

The order of fields in your query doesn’t matter. In other words, both of the following queries work identi-

cally:

>>> Person.objects.raw("SELECT id, first_name, last_name, birth_date FROM myapp_person")

>>> Person.objects.raw("SELECT last_name, birth_date, first_name, id FROM myapp_person")

194 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Matching is done by name. This means that you can use SQL’s AS clauses to map fields in the query to model

fields. Soif you had some other table that had Person data in it, you could easily map it into Person instances:

>>> Person.objects.raw(
nn
SELECT first AS first_name,
last AS last_name,
bd AS birth_date,
pk AS id,
FROM some_other_table

nun

As long as the names match, the model instances will be created correctly.

Alternatively, you can map fields in the query to model fields using the translations argument to raw().
This is a dictionary mapping names of fields in the query to names of fields on the model. For example, the

above query could also be written:

>>> name_map = {"first": "first_name", "last": "last_name", "bd": "birth_date", "pk": "id
'_)n}

>>> Person.objects.raw("SELECT * FROM some_other table", translations=name_map)

Index lookups

raw () supports indexing, so if you need only the first result you can write:

‘>>> first_person = Person.objects.raw("SELECT * FROM myapp_person") [0]

However, the indexing and slicing are not performed at the database level. If you have a large number of

Person objects in your database, it is more efficient to limit the query at the SQL level:

‘>>> first_person = Person.objects.raw("SELECT * FROM myapp_person LIMIT 1")[0]

Deferring model fields

Fields may also be left out:

>>> people = Person.objects.raw("SELECT id, first_name FROM myapp_person")

The Person objects returned by this query will be deferred model instances (see defer()). This means that

the fields that are omitted from the query will be loaded on demand. For example:

3.2. Models and databases 195

Django Documentation, Release 5.2.7.dev20250917080137

>>> for p in Person.objects.raw("SELECT id, first_name FROM myapp_person") :
(

p.first_name, # This will be retrieved by the original query

p.last_name, # This will be retrieved on demand

John Smith

Jane Jones

From outward appearances, this looks like the query has retrieved both the first name and last name. How-
ever, this example actually issued 3 queries. Only the first names were retrieved by the raw() query — the

last names were both retrieved on demand when they were printed.

There is only one field that you can’t leave out - the primary key field. Django uses the primary key to
identify model instances, so it must always be included in a raw query. A FieldDoesNotEzist exception will

be raised if you forget to include the primary key.

Adding annotations

You can also execute queries containing fields that aren’t defined on the model. For example, we could use

PostgreSQL’s age() function to get a list of people with their ages calculated by the database:

>>> people = Person.objects.raw("SELECT *, age(birth_date) AS age FROM myapp_person")
>>> for p in people:
("%s is %s." % (p.first_name, p.age))

John is 37.

Jane is 42.

You can often avoid using raw SQL to compute annotations by instead using a Func() expression.

Passing parameters into raw()

If you need to perform parameterized queries, you can use the params argument to raw():

>>> 1lname = "Doe"

>>> Person.objects.raw("SELECT * FROM myapp_person WHERE last_name = %s", [lname])

params is a list or dictionary of parameters. You’ll use %s placeholders in the query string for a list, or % (key) s
placeholders for a dictionary (where key is replaced by a dictionary key), regardless of your database engine.

Such placeholders will be replaced with parameters from the params argument.

196 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

O Note

Dictionary params are not supported with the SQLite backend; with this backend, you must pass param-

eters as a list.

A Warning
Do not use string formatting on raw queries or quote placeholders in your SQL strings!

It’s tempting to write the above query as:

>>> query = "SELECT * FROM myapp_person WHERE last_name = %s" % lname

>>> Person.objects.raw(query)

You might also think you should write your query like this (with quotes around ¥%s):

>>> query = "SELECT * FROM myapp_person WHERE last_name = '/s'"

Don’t make either of these mistakes.

As discussed in SQL injection protection, using the params argument and leaving the placeholders un-
quoted protects you from SQL injection attacks, a common exploit where attackers inject arbitrary SQL

into your database. If you use string interpolation or quote the placeholder, you're at risk for SQL injec-

tion.

Executing custom SQL directly

Sometimes even Manager.raw() isn’t quite enough: you might need to perform queries that don’t map
cleanly to models, or directly execute UPDATE, INSERT, or DELETE queries.

In these cases, you can always access the database directly, routing around the model layer entirely.

The object django.db.connection represents the default database connection. To use the database con-
nection, call connection.cursor() to get a cursor object. Then, call cursor.execute(sql, [params]) to

execute the SQL and cursor.fetchone () or cursor.fetchall () to return the resulting rows.

For example:

from django.db import connection

def my_custom_sql(DE
with connection.cursor() as cursor:
cursor.execute ("UPDATE bar SET foo = 1 WHERE baz = %s", [.baz])
cursor.execute ("SELECT foo FROM bar WHERE baz = %s", [.baz])

row = cursor.fetchone()

(continues on next page)

3.2. Models and databases 197

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

return row

To protect against SQL injection, you must not include quotes around the %s placeholders in the SQL string.

Note that if you want to include literal percent signs in the query, you have to double them in the case you

are passing parameters:

cursor.execute ("SELECT foo FROM bar WHERE baz '30%'")
cursor.execute ("SELECT foo FROM bar WHERE baz = '30%%' AND id = %s", [.id])

If you are using more than one database, you can use django .db. connections to obtain the connection (and
cursor) for a specific database. django .db. connections is a dictionary-like object that allows you to retrieve

a specific connection using its alias:

from django.db import connections

with connections["my db_alias"].cursor() as cursor:

By default, the Python DB API will return results without their field names, which means you end up with
a list of values, rather than a dict. At a small performance and memory cost, you can return results as a

dict by using something like this:

def dictfetchall(cursor):
nun
Return all rows from a cursor as a dict.
Assume the column names are unique.
moan
columns = [col[0] for col in cursor.description]

return [((columns, row)) for row in cursor.fetchall()]

Another option is to use collections.namedtuple () from the Python standard library. A namedtuple is a
tuple-like object that has fields accessible by attribute lookup; it’s also indexable and iterable. Results are

immutable and accessible by field names or indices, which might be useful:

from collections import namedtuple

def namedtuplefetchall(cursor):

(continues on next page)

198 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
Return all rows from a cursor as a namedtuple.
Assume the column names are unique.
i
desc = cursor.description
nt_result = namedtuple("Result", [col[0] for col in desc])

return [nt_result(*row) for row in cursor.fetchall()]

The dictfetchall() and namedtuplefetchall() examples assume unique column names, since a cursor

cannot distinguish columns from different tables.

Here is an example of the difference between the three:

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2")
>>> cursor.fetchall()
((54360982, None), (54360880, None))

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2")
>>> dictfetchall (cursor)
[{'parent_id': None, 'id': 54360982}, {'parent_id': None, 'id': 54360880}]

>>> cursor.execute("SELECT id, parent_id FROM test LIMIT 2")

>>> results = namedtuplefetchall(cursor)

>>> results

[Result (id=54360982, parent_id=None), Result(id=54360880, parent_id=None)]
>>> results[0].id

54360982

>>> results[0] [0]

54360982

Connections and cursors

connection and cursor mostly implement the standard Python DB-API described in PEP 249 — except

when it comes to transaction handling.

If you're not familiar with the Python DB-API, note that the SQL statement in cursor.execute() uses
placeholders, "%s", rather than adding parameters directly within the SQL. If you use this technique, the

underlying database library will automatically escape your parameters as necessary.

Also note that Django expects the "%s" placeholder, not the "?" placeholder, which is used by the SQLite

Python bindings. This is for the sake of consistency and sanity.

Using a cursor as a context manager:

3.2. Models and databases 199

Django Documentation, Release 5.2.7.dev20250917080137

with connection.cursor() as c:

c.execute(...)

is equivalent to:

¢ = connection.cursor ()
try:

c.execute(...)
finally:

c.close()

Calling stored procedures

CursorWrapper . callproc (procname, params=None, kparams=None)

Calls a database stored procedure with the given name. A sequence (params) or dictionary (kparams)

of input parameters may be provided. Most databases don’t support kparams. Of Django’s built-in

backends, only Oracle supports it.

For example, given this stored procedure in an Oracle database:

CREATE PROCEDURE "TEST PROCEDURE"(v_i

p_i ;

p_text NVARCHAR2(10);
BEGIN

p_i :=v_i;

p_text := v_text;

END;

, V_text NVARCHAR2(10)) AS

This will call it:

with connection.cursor() as cursor:

cursor.callproc("test_procedure", [1, "test"])

200

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

3.2.7 Database transactions

Django gives you a few ways to control how database transactions are managed.

Managing database transactions

Django’s default transaction behavior

Django’s default behavior is to run in autocommit mode. Each query is immediately committed to the

database, unless a transaction is active. See below for details.

Django uses transactions or savepoints automatically to guarantee the integrity of ORM operations that

require multiple queries, especially delete() and update() queries.

Django’s TestCase class also wraps each test in a transaction for performance reasons.

Tying transactions to HTTP requests

A common way to handle transactions on the web is to wrap each request in a transaction. Set
ATOMIC REQUESTS to True in the configuration of each database for which you want to enable this behavior.

It works like this. Before calling a view function, Django starts a transaction. If the response is produced
without problems, Django commits the transaction. If the view produces an exception, Django rolls back the

transaction.

You may perform subtransactions using savepoints in your view code, typically with the atomic () context

manager. However, at the end of the view, either all or none of the changes will be committed.

A Warning

While the simplicity of this transaction model is appealing, it also makes it inefficient when traffic in-
creases. Opening a transaction for every view has some overhead. The impact on performance depends

on the query patterns of your application and on how well your database handles locking.

© Per-request transactions and streaming responses

When a view returns a StreamingHttpResponse, reading the contents of the response will often execute
code to generate the content. Since the view has already returned, such code runs outside of the transac-

tion.

Generally speaking, it isn’t advisable to write to the database while generating a streaming response, since

there’s no sensible way to handle errors after starting to send the response.

In practice, this feature wraps every view function in the atomic () decorator described below.

3.2. Models and databases 201

Django Documentation, Release 5.2.7.dev20250917080137

Note that only the execution of your view is enclosed in the transactions. Middleware runs outside of the

transaction, and so does the rendering of template responses.
When ATOMIC REQUESTS is enabled, it’s still possible to prevent views from running in a transaction.

non_atomic_requests (using=None)

This decorator will negate the effect of ATOMIC REQUESTS for a given view:

from django.db import transaction

Otransaction.non_atomic_requests
def my_view(request):
do_stuff ()

Q@transaction.non_atomic_requests(using="other")
def my_other_view(request):

do_stuff_on_the_other_database()

It only works if it’s applied to the view itself.

Controlling transactions explicitly

Django provides a single API to control database transactions.

atomic (using=None, savepoint=True, durable=False)

Atomicity is the defining property of database transactions. atomic allows us to create a block of code
within which the atomicity on the database is guaranteed. If the block of code is successfully completed,

the changes are committed to the database. If there is an exception, the changes are rolled back.

atomic blocks can be nested. In this case, when an inner block completes successfully, its effects can

still be rolled back if an exception is raised in the outer block at a later point.

It is sometimes useful to ensure an atomic block is always the outermost atomic block, ensuring that
any database changes are committed when the block is exited without errors. This is known as dura-
bility and can be achieved by setting durable=True. If the atomic block is nested within another it

raises a RuntimeError.

atomic is usable both as a decorator:

from django.db import transaction

@transaction.atomic

(continues on next page)

202 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def viewfunc(request):

do_stuff ()

and as a context manager:

from django.db import transaction

def viewfunc(request):

do_stuff ()

with transaction.atomic():

do_more_stuff()

Wrapping atomic in a try/except block allows for natural handling of integrity errors:

from django.db import IntegrityError, transaction

Otransaction.atomic
def viewfunc(request):

create_parent ()

try:
with transaction.atomic():
generate_relationships()
except IntegrityError:

handle_exception()

add_children()

In this example, even if generate_relationships() causes a database error by breaking an integrity
constraint, you can execute queries in add_children(), and the changes from create_parent ()
are still there and bound to the same transaction. Note that any operations attempted in
generate_relationships() will already have been rolled back safely when handle_exception() is

called, so the exception handler can also operate on the database if necessary.

3.2. Models and databases 203

Django Documentation, Release 5.2.7.dev20250917080137

O Avoid catching exceptions inside atomic!

When exiting an atomic block, Django looks at whether it’s exited normally or with an exception
to determine whether to commit or roll back. If you catch and handle exceptions inside an atomic
block, you may hide from Django the fact that a problem has happened. This can result in unex-

pected behavior.

This is mostly a concern for DatabaseError and its subclasses such as IntegrityError. After such
an error, the transaction is broken and Django will perform a rollback at the end of the atomic
block. If you attempt to run database queries before the rollback happens, Django will raise a
TransactionManagementError. You may also encounter this behavior when an ORM-related signal

handler raises an exception.

The correct way to catch database errors is around an atomic block as shown above. If necessary,
add an extra atomic block for this purpose. This pattern has another advantage: it delimits explic-

itly which operations will be rolled back if an exception occurs.

If you catch exceptions raised by raw SQL queries, Django’s behavior is unspecified and database-

dependent.

© You may need to manually revert app state when rolling back a transaction.

The values of a model’s fields won’t be reverted when a transaction rollback happens. This could

lead to an inconsistent model state unless you manually restore the original field values.

For example, given MyModel with an active field, this snippet ensures that the if obj.active

check at the end uses the correct value if updating active to True fails in the transaction:

from django.db import DatabaseError, transaction

obj = MyModel (active=False)
obj.active = True
try:
with transaction.atomic():
obj.save()
except DatabaseError:

obj.active = False

if obj.active:

This also applies to any other mechanism that may hold app state, such as caching or global vari-
ables. For example, if the code proactively updates data in the cache after saving an object, it’s

recommended to use transaction.on commit() instead, to defer cache alterations until the transac-

204

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

tion is actually committed.

In order to guarantee atomicity, atomic disables some APIs. Attempting to commit, roll back, or change

the autocommit state of the database connection within an atomic block will raise an exception.

atomic takes a using argument which should be the name of a database. If this argument isn’t pro-

vided, Django uses the "default" database.
Under the hood, Django’s transaction management code:
¢ opens a transaction when entering the outermost atomic block;
e creates a savepoint when entering an inner atomic block;
¢ releases or rolls back to the savepoint when exiting an inner block;
¢ commits or rolls back the transaction when exiting the outermost block.

You can disable the creation of savepoints for inner blocks by setting the savepoint argument to False.
If an exception occurs, Django will perform the rollback when exiting the first parent block with a
savepoint if there is one, and the outermost block otherwise. Atomicity is still guaranteed by the outer
transaction. This option should only be used if the overhead of savepoints is noticeable. It has the

drawback of breaking the error handling described above.

You may use atomic when autocommit is turned off. It will only use savepoints, even for the outermost
block.

© Performance considerations

Open transactions have a performance cost for your database server. To minimize this overhead, keep
your transactions as short as possible. This is especially important if you're using atomic () in long-

running processes, outside of Django’s request / response cycle.

Autocommit

Why Django uses autocommit

In the SQL standards, each SQL query starts a transaction, unless one is already active. Such transactions

must then be explicitly committed or rolled back.

This isn’t always convenient for application developers. To alleviate this problem, most databases provide
an autocommit mode. When autocommit is turned on and no transaction is active, each SQL query gets
wrapped in its own transaction. In other words, not only does each such query start a transaction, but the

transaction also gets automatically committed or rolled back, depending on whether the query succeeded.

PEP 249, the Python Database API Specification v2.0, requires autocommit to be initially turned off. Django

overrides this default and turns autocommit on.

3.2. Models and databases 205

Django Documentation, Release 5.2.7.dev20250917080137

To avoid this, you can deactivate the transaction management, but it isn’t recommended.

Deactivating transaction management

You can totally disable Django’s transaction management for a given database by setting AUTOCOMMIT to
False in its configuration. If you do this, Django won’t enable autocommit, and won’t perform any commits.

You'll get the regular behavior of the underlying database library.

This requires you to commit explicitly every transaction, even those started by Django or by third-party
libraries. Thus, this is best used in situations where you want to run your own transaction-controlling mid-

dleware or do something really strange.

Performing actions after commit

Sometimes you need to perform an action related to the current database transaction, but only if the trans-
action successfully commits. Examples might include a background task, an email notification, or a cache

invalidation.

on_commit () allows you to register callbacks that will be executed after the open transaction is successfully

committed:

on_commit (func, using=None, robust=False)

Pass a function, or any callable, to on_commit ():

from django.db import transaction

def send_welcome_email():

transaction.on_commit(send_welcome_email)

Callbacks will not be passed any arguments, but you can bind them with functools.partial():

from functools import partial

for user in users:

transaction.on_commit (partial(send_invite_email, user=user))

Callbacks are called after the open transaction is successfully committed. If the transaction is instead rolled
back (typically when an unhandled exception is raised in an atomic () block), the callback will be discarded,

and never called.

If you call on_commit () while there isn’t an open transaction, the callback will be executed immediately.

206 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

It’s sometimes useful to register callbacks that can fail. Passing robust=True allows the next callbacks to be
executed even if the current one throws an exception. All errors derived from Python’s Exception class are

caught and logged to the django.db.backends.base logger.

You can use TestCase. captureOnCommitCallbacks () to test callbacks registered with on_commit ()

Savepoints

Savepoints (i.e. nested atomic () blocks) are handled correctly. That is, an on_commit () callable registered
after a savepoint (in a nested atomic () block) will be called after the outer transaction is committed, but not

if a rollback to that savepoint or any previous savepoint occurred during the transaction:

with transaction.atomic():

transaction.on_commit (foo)

with transaction.atomic():

transaction.on_commit (bar)

On the other hand, when a savepoint is rolled back (due to an exception being raised), the inner callable will
not be called:

with transaction.atomic():

transaction.on_commit (foo)

try:
with transaction.atomic():
transaction.on_commit (bar)
raise SomeError()
except SomeError:

pass

3.2. Models and databases 207

Django Documentation, Release 5.2.7.dev20250917080137

Order of execution

On-commit functions for a given transaction are executed in the order they were registered.

Exception handling

If one on-commit function registered with robust=False within a given transaction raises an uncaught ex-
ception, no later registered functions in that same transaction will run. This is the same behavior as if you'd

executed the functions sequentially yourself without on_commit ().

Timing of execution

Your callbacks are executed after a successful commit, so a failure in a callback will not cause the transaction
to roll back. They are executed conditionally upon the success of the transaction, but they are not part of
the transaction. For the intended use cases (mail notifications, background tasks, etc.), this should be fine.
If it’s not (if your follow-up action is so critical that its failure should mean the failure of the transaction
itself), then you don’t want to use the on_commit () hook. Instead, you may want two-phase commit such
as the psycopg Two-Phase Commit protocol support and the optional Two-Phase Commit Extensions in the
Python DB-API specification.

Callbacks are not run until autocommit is restored on the connection following the commit (because otherwise
any queries done in a callback would open an implicit transaction, preventing the connection from going back

into autocommit mode).

When in autocommit mode and outside of an atomic () block, the function will run immediately, not on

commit.

On-commit functions only work with autocommit mode and the atomic () (or ATOMIC_ REQUESTS) transaction
API. Calling on_commit () when autocommit is disabled and you are not within an atomic block will result

in an error.

Use in tests

Django’s TestCase class wraps each test in a transaction and rolls back that transaction after each test,
in order to provide test isolation. This means that no transaction is ever actually committed, thus your

on_commit () callbacks will never be run.

You can overcome this limitation by using TestCase. captureOnCommitCallbacks (). This captures your
on_commit () callbacks in a list, allowing you to make assertions on them, or emulate the transaction com-

mitting by calling them.

Another way to overcome the limitation is to use TransactionTestCase instead of TestCase. This will mean
your transactions are committed, and the callbacks will run. However TransactionTestCase flushes the

database between tests, which is significantly slower than TestCase’s isolation.

208 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Why no rollback hook?

A rollback hook is harder to implement robustly than a commit hook, since a variety of things can cause an

implicit rollback.

For instance, if your database connection is dropped because your process was killed without a chance to

shut down gracefully, your rollback hook will never run.

But there is a solution: instead of doing something during the atomic block (transaction) and then undoing it
if the transaction fails, use on_commi t () to delay doing it in the first place until after the transaction succeeds.

It’s a lot easier to undo something you never did in the first place!

Low-level APIs

A Warning

Always prefer atomic () if possible at all. It accounts for the idiosyncrasies of each database and prevents

invalid operations.

The low level APIs are only useful if you're implementing your own transaction management.

Autocommit

Django provides an API in the django.db. transaction module to manage the autocommit state of each

database connection.

get_autocommit (using=None)
set_autocommit (autocommit, using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django

uses the "default" database.
Autocommit is initially turned on. If you turn it off, it’s your responsibility to restore it.

Once you turn autocommit off, you get the default behavior of your database adapter, and Django won’t help
you. Although that behavior is specified in PEP 249, implementations of adapters aren’t always consistent

with one another. Review the documentation of the adapter you're using carefully.

You must ensure that no transaction is active, usually by issuing a commit () or a rollback (), before turning

autocommit back on.

Django will refuse to turn autocommit off when an atomic () block is active, because that would break atom-

icity.

3.2. Models and databases 209

Django Documentation, Release 5.2.7.dev20250917080137

Transactions

A transaction is an atomic set of database queries. Even if your program crashes, the database guarantees

that either all the changes will be applied, or none of them.

Django doesn’t provide an API to start a transaction. The expected way to start a transaction is to disable

autocommit with set_autocommit ().

Once you're in a transaction, you can choose either to apply the changes you’ve performed until this point

with commit (), or to cancel them with rollback (). These functions are defined in django. db. transaction.

commit (using=None)
rollback (using=None)

These functions take a using argument which should be the name of a database. If it isn’t provided, Django

uses the "default" database.

Django will refuse to commit or to rollback when an atomic () block is active, because that would break

atomicity.

Savepoints

A savepoint is a marker within a transaction that enables you to roll back part of a transaction, rather than
the full transaction. Savepoints are available with the SQLite, PostgreSQL, Oracle, and MySQL (when using
the InnoDB storage engine) backends. Other backends provide the savepoint functions, but they’re empty
operations — they don’t actually do anything,.

Savepoints aren’t especially useful if you are using autocommit, the default behavior of Django. However,
once you open a transaction with atomic (), you build up a series of database operations awaiting a commit
or rollback. If you issue a rollback, the entire transaction is rolled back. Savepoints provide the ability to
perform a fine-grained rollback, rather than the full rollback that would be performed by transaction.
rollback().

When the atomic() decorator is nested, it creates a savepoint to allow partial commit or rollback. You're
strongly encouraged to use atomic () rather than the functions described below, but they’re still part of the

public API, and there’s no plan to deprecate them.

Each of these functions takes a using argument which should be the name of a database for which the

behavior applies. If no using argument is provided then the "default" database is used.
Savepoints are controlled by three functions in django. db. transaction:

savepoint (using=None)

Creates a new savepoint. This marks a point in the transaction that is known to be in a “good” state.

Returns the savepoint ID (sid).

210 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

savepoint_commit (sid, using=None)

Releases savepoint sid. The changes performed since the savepoint was created become part of the

transaction.

savepoint_rollback(sid, using=None)

Rolls back the transaction to savepoint sid.
These functions do nothing if savepoints aren’t supported or if the database is in autocommit mode.
In addition, there’s a utility function:

clean_savepoints (using=None)

Resets the counter used to generate unique savepoint IDs.

The following example demonstrates the use of savepoints:

from django.db import tramnsaction

@transaction.atomic

def viewfunc(request):

a.save()

sid = transaction.savepoint()

b.save()

if want_to_keep_b:

transaction.savepoint_commit (sid)

else:

transaction.savepoint_rollback(sid)

Savepoints may be used to recover from a database error by performing a partial rollback. If you’re doing this
inside an atomic () block, the entire block will still be rolled back, because it doesn’t know you’ve handled
the situation at a lower level! To prevent this, you can control the rollback behavior with the following

functions.

get_rollback(using=None)

set_rollback(rollback, using=None)

3.2. Models and databases 211

Django Documentation, Release 5.2.7.dev20250917080137

Setting the rollback flag to True forces a rollback when exiting the innermost atomic block. This may be

useful to trigger a rollback without raising an exception.

Setting it to False prevents such a rollback. Before doing that, make sure you’ve rolled back the transaction
to a known-good savepoint within the current atomic block! Otherwise you're breaking atomicity and data

corruption may occur.

Database-specific notes

Savepoints in SQLite

While SQLite supports savepoints, a flaw in the design of the sqlite3 module makes them hardly usable.

When autocommit is enabled, savepoints don’t make sense. When it’s disabled, sqlite3 commits implicitly
before savepoint statements. (In fact, it commits before any statement other than SELECT, INSERT, UPDATE,
DELETE and REPLACE.) This bug has two consequences:

o The low level APIs for savepoints are only usable inside a transaction i.e. inside an atomic () block.

e It’s impossible to use atomic () when autocommit is turned off.

Transactions in MySQL

If you’re using MySQL, your tables may or may not support transactions; it depends on your MySQL version
and the table types you’'re using. (By “table types,” we mean something like “InnoDB” or “MyISAM”.) MySQL
transaction peculiarities are outside the scope of this article, but the MySQL site has information on MySQL

transactions.

If your MySQL setup does not support transactions, then Django will always function in autocommit mode:
statements will be executed and committed as soon as they’re called. If your MySQL setup does support

transactions, Django will handle transactions as explained in this document.

Handling exceptions within PostgreSQL transactions

O Note

This section is relevant only if you’re implementing your own transaction management. This problem

cannot occur in Django’s default mode and atomic () handles it automatically.

Inside a transaction, when a call to a PostgreSQL cursor raises an exception (typically IntegrityError),
all subsequent SQL in the same transaction will fail with the error “current transaction is aborted, queries
ignored until end of transaction block”. While the basic use of save() is unlikely to raise an exception in
PostgreSQL, there are more advanced usage patterns which might, such as saving objects with unique fields,

saving using the force_insert/force_update flag, or invoking custom SQL.

There are several ways to recover from this sort of error.

212 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Transaction rollback

The first option is to roll back the entire transaction. For example:

a.save()

try:
b.save()

except IntegrityError:
transaction.rollback()

c.save()

Calling transaction.rollback() rolls back the entire transaction. Any uncommitted database operations
will be lost. In this example, the changes made by a.save () would be lost, even though that operation raised

no error itself.

Savepoint rollback

You can use savepoints to control the extent of a rollback. Before performing a database operation that
could fail, you can set or update the savepoint; that way, if the operation fails, you can roll back the single

offending operation, rather than the entire transaction. For example:

a.save()

sid = transaction.savepoint()

try:
b.save()
transaction.savepoint_commit (sid)

except IntegrityError:
transaction.savepoint_rollback(sid)

c.save()

In this example, a.save () will not be undone in the case where b.save () raises an exception.

3.2.8 Multiple databases

This topic guide describes Django’s support for interacting with multiple databases. Most of the rest of
Django’s documentation assumes you are interacting with a single database. If you want to interact with

multiple databases, you’ll need to take some additional steps.

> See also

See Multi-database support for information about testing with multiple databases.

3.2. Models and databases 213

Django Documentation, Release 5.2.7.dev20250917080137

Defining your databases

The first step to using more than one database with Django is to tell Django about the database servers you’ll
be using. This is done using the DATABASES setting. This setting maps database aliases, which are a way to
refer to a specific database throughout Django, to a dictionary of settings for that specific connection. The

settings in the inner dictionaries are described fully in the DATABASES documentation.

Databases can have any alias you choose. However, the alias default has special significance. Django uses

the database with the alias of default when no other database has been selected.

The following is an example settings.py snippet defining two databases — a default PostgreSQL database
and a MySQL database called users:

DATABASES = {

"default": {
"NAME": "app_data",
"ENGINE": "django.db.backends.postgresql",
"USER": "postgres_user",
"PASSWORD": "s3krit",

},

"users": {
"NAME": "user_data",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "privé4te",

If the concept of a default database doesn’t make sense in the context of your project, you need to be
careful to always specify the database that you want to use. Django requires that a default database entry
be defined, but the parameters dictionary can be left blank if it will not be used. To do this, you must set up
DATABASE_ROUTERS for all of your apps’ models, including those in any contrib and third-party apps you're
using, so that no queries are routed to the default database. The following is an example settings . py snippet

defining two non-default databases, with the default entry intentionally left empty:

DATABASES = {
"default": {7},
"users": {
"NAME": "user_data",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "superS3cret",

(continues on next page)

214 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
"customers": {
"NAME": "customer_data",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_cust",
"PASSWORD": "veryPriv@ate",

If you attempt to access a database that you haven’t defined in your DATABASES setting, Django will raise a

django.utils.connection.ConnectionDoesNotExist exception.

Synchronizing your databases

The migrate management command operates on one database at a time. By default, it operates on the
default database, but by providing the --database option, you can tell it to synchronize a different
database. So, to synchronize all models onto all databases in the first example above, you would need to

call:

$./manage.py migrate

$./manage.py migrate --database=users

If you don’t want every application to be synchronized onto a particular database, you can define a database

router that implements a policy constraining the availability of particular models.

If, as in the second example above, you've left the default database empty, you must provide a database

name each time you run mi grate. Omitting the database name would raise an error. For the second example:

$./manage.py migrate --database=users

$./manage.py migrate --database=customers

Using other management commands

Most other django-admin commands that interact with the database operate in the same way as migrate —

they only ever operate on one database at a time, using --database to control the database used.

An exception to thisruleis the makemigrations command. It validates the migration history in the databases
to catch problems with the existing migration files (which could be caused by editing them) before creat-
ing new migrations. By default, it checks only the default database, but it consults the allow_migrate ()

method of routers if any are installed.

3.2. Models and databases 215

Django Documentation, Release 5.2.7.dev20250917080137

Automatic database routing

The easiest way to use multiple databases is to set up a database routing scheme. The default routing scheme
ensures that objects remain ‘sticky’ to their original database (i.e., an object retrieved from the foo database
will be saved on the same database). The default routing scheme ensures that if a database isn’t specified, all

queries fall back to the default database.

You don’t have to do anything to activate the default routing scheme — it is provided ‘out of the box’ on
every Django project. However, if you want to implement more interesting database allocation behaviors,

you can define and install your own database routers.

Database routers

A database Router is a class that provides up to four methods:
db_for_read (model, **hints)
Suggest the database that should be used for read operations for objects of type model.

If a database operation is able to provide any additional information that might assist in selecting a

database, it will be provided in the hints dictionary. Details on valid hints are provided below.
Returns None if there is no suggestion.

db_for_write (model, **hints)
Suggest the database that should be used for writes of objects of type Model.

If a database operation is able to provide any additional information that might assist in selecting a

database, it will be provided in the hints dictionary. Details on valid hints are provided below.
Returns None if there is no suggestion.

allow_relation(objl, obj2, **hints)

Return True if a relation between obj1l and obj2 should be allowed, False if the relation should be
prevented, or None if the router has no opinion. This is purely a validation operation, used by foreign

key and many to many operations to determine if a relation should be allowed between two objects.

If no router has an opinion (i.e. all routers return None), only relations within the same database are

allowed.

allow_migrate(db, app label, model name=None, **hints)

Determine if the migration operation is allowed to run on the database with alias db. Return True if

the operation should run, False if it shouldn’t run, or None if the router has no opinion.
The app_label positional argument is the label of the application being migrated.

model_name is set by most migration operations to the value of model._meta.model_name (the lower-
cased version of the model __name__) of the model being migrated. Its value is None for the RunPython

and RunS@L operations unless they provide it using hints.

hints are used by certain operations to communicate additional information to the router.

216 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

When model_name is set, hints normally contains the model class under the key 'model'. Note that
it may be a historical model, and thus not have any custom attributes, methods, or managers. You

should only rely on _meta.
This method can also be used to determine the availability of a model on a given database.

makemigrations always creates migrations for model changes, but if allow_migrate() returns False,
any migration operations for the model_name will be silently skipped when running migrate on the
db. Changing the behavior of allow_migrate() for models that already have migrations may result
in broken foreign keys, extra tables, or missing tables. When makemigrations verifies the migration

history, it skips databases where no app is allowed to migrate.

A router doesn’t have to provide all these methods — it may omit one or more of them. If one of the methods

is omitted, Django will skip that router when performing the relevant check.

Hints

The hints received by the database router can be used to decide which database should receive a given request.

At present, the only hint that will be provided is instance, an object instance that is related to the read or
write operation that is underway. This might be the instance that is being saved, or it might be an instance
that is being added in a many-to-many relation. In some cases, no instance hint will be provided at all. The
router checks for the existence of an instance hint, and determine if that hint should be used to alter routing

behavior.

Using routers

Database routers are installed using the DATABASE_ROUTERS setting. This setting defines a list of class names,
each specifying a router that should be used by the base router (django.db.router).

The base router is used by Django’s database operations to allocate database usage. Whenever a query needs
to know which database to use, it calls the base router, providing a model and a hint (if available). The base
router tries each router class in turn until one returns a database suggestion. If no routers return a suggestion,
the base router tries the current instance._state. db of the hint instance. If no hint instance was provided,

or instance._state.db is None, the base router will allocate the default database.

An example

© Example purposes only!

This example is intended as a demonstration of how the router infrastructure can be used to alter database

usage. It intentionally ignores some complex issues in order to demonstrate how routers are used.

This example won’t work if any of the models in myapp contain relationships to models outside of the
other database. Cross-database relationships introduce referential integrity problems that Django can’t

currently handle.

3.2. Models and databases 217

Django Documentation, Release 5.2.7.dev20250917080137

The primary/replica (referred to as master/slave by some databases) configuration described is also flawed
—itdoesn’t provide any solution for handling replication lag (i.e., query inconsistencies introduced because
of the time taken for a write to propagate to the replicas). It also doesn’t consider the interaction of

transactions with the database utilization strategy.

So - what does this mean in practice? Let’s consider another sample configuration. This one will have several
databases: one for the auth application, and all other apps using a primary/replica setup with two read

replicas. Here are the settings specifying these databases:

DATABASES = {
"default": {},
"auth_db": {
"NAME": "auth_db_name",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "swordfish",

3,
"primary": {
"NAME": "primary_name",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "spam",
1,

"replical": {
"NAME": "replical_name",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "eggs",
3,
"replica2": {
"NAME": "replica2_name",
"ENGINE": "django.db.backends.mysql",
"USER": "mysql_user",
"PASSWORD": "bacon",

Now we’ll need to handle routing. First we want a router that knows to send queries for the auth and
contenttypes apps to auth_db (auth models are linked to ContentType, so they must be stored in the same
database):

218 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

class AuthRouter:
nmun
A router to control all database operations on models in the

auth and contenttypes applications.

nnn

route_app_labels = {"auth", "contenttypes'}

def db_for_read(self, model, **hints):

Attempts to read auth and contenttypes models go to auth_db.
if model._meta.app_label in self.route_app_labels:
return "auth db"

return None

def db_for_write(self, model, **hints):

Attempts to write auth and contenttypes models go to auth_db.
if model._meta.app_label in self.route_app_labels:
return "auth_db"

return None

def allow_relation(self, objl, obj2, **xhints):
Allow relations if a model in the auth or contenttypes apps is

involved.

if (
objl. _meta.app_label in self.route_app_labels
or obj2._meta.app_label in self.route_app_labels

return True

return None

def allow_migrate(self, db, app_label, model_name=None, *xhints) :

Make sure the auth and contenttypes apps only appear in the
'auth_db' database.

(continues on next page)

3.2. Models and databases 219

Django Documentation, Release 5.2.7.dev20250917080137

if app_label in .route_app_labels:

return db == "auth db"

return None

(continued from previous page)

And we also want a router that sends all other apps to the primary/replica configuration, and randomly

chooses a replica to read from:

import random

class PrimaryReplicaRouter:
def db_for_read(, model, **hints):

nnn

Reads go to a randomly-chosen replica.

return random.choice(["replical’, "replica2'"])

def db_for_write(, model, *x*xhints):

nun

Writes always go to primary.

nun

return "primary"

def allow_relation(, objl, obj2, **hints):
Relations between objects are allowed if both objects are
in the primary/replica pool.
db_set = {"primary", "replical", "replica2"}
if objl._state.db in db_set and obj2._state.db in db_set:
return True

return None

def allow_migrate(, db, app_label, model_name=None, **hints):

nmnn

A1l non-auth models end up in this pool.

nun

return True

Finally, in the settings file, we add the following (substituting path.to. with the actual Python path to the

220

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

module(s) where the routers are defined):

DATABASE_ROUTERS = ["path.to.AuthRouter", "path.to.PrimaryReplicaRouter"]

The order in which routers are processed is significant. Routers will be queried in the order they
are listed in the DATABASE_ROUTERS setting. In this example, the AuthRouter is processed before the
PrimaryReplicaRouter, and as a result, decisions concerning the models in auth are processed before
any other decision is made. If the DATABASE_ROUTERS setting listed the two routers in the other order,
PrimaryReplicaRouter.allow_migrate() would be processed first. The catch-all nature of the Prima-

ryReplicaRouter implementation would mean that all models would be available on all databases.

With this setup installed, and all databases migrated as per Synchronizing your databases, lets run some

Django code:

>>> # This retrieval will be performed on the 'auth_db' database
>>> fred = User.objects.get(username="fred")

>>> fred.first_name = "Frederick"

>>> # This save will also be directed to 'auth_db'

>>> fred.save()

>>> # These retrieval will be randomly allocated to a rTeplica database

>>> dna = Person.objects.get(name="Douglas Adams")

>>> # A new object has no database allocation when created

>>> mh = Book(title="lMostly Harmless")

>>> # This assignment will consult the router, and set mh onto
>>> # the same database as the author object

>>> mh.author = dna

>>> # This save will force the 'mh' instance onto the primary database...

>>> mh.save ()

>>> # ... but if we re-retrieve the object, it will come back on a Teplica

>>> mh = Book.objects.get(title="Mostly Harmless")

This example defined a router to handle interaction with models from the auth app, and other routers to
handle interaction with all other apps. If you left your default database empty and don’t want to define a
catch-all database router to handle all apps not otherwise specified, your routers must handle the names of
all apps in INSTALLED_APPS before you migrate. See Behavior of contrib apps for information about contrib

apps that must be together in one database.

3.2. Models and databases 221

Django Documentation, Release 5.2.7.dev20250917080137

Manually selecting a database
Django also provides an API that allows you to maintain complete control over database usage in your code.

A manually specified database allocation will take priority over a database allocated by a router.

Manually selecting a database for a QuerySet

You can select the database for a QuerySet at any point in the QuerySet “chain.” Call using() on the

QuerySet to get another QuerySet that uses the specified database.

using () takes asingle argument: the alias of the database on which you want to run the query. For example:

>>>

>>> Author.objects.all()

>>>

>>> Author.objects.using("default")

>>>

>>> Author.objects.using("other")

Selecting a database for save ()

Use the using keyword to Model.save () to specify to which database the data should be saved.

For example, to save an object to the legacy_users database, you'd use this:

>>> my_object.save(using="legacy users')

If you don’t specify using, the save () method will save into the default database allocated by the routers.

Moving an object from one database to another

If you've saved an instance to one database, it might be tempting to use save(using=...) as a way to
migrate the instance to a new database. However, if you don’t take appropriate steps, this could have some

unexpected consequences.

Consider the following example:

>>> p = Person(name="Fred")
>>> p.save(using="first")

>>> p.save(using="second")

In statement 1, a new Person object is saved to the first database. At this time, p doesn’t have a primary
key, so Django issues an SQL INSERT statement. This creates a primary key, and Django assigns that primary

key to p.

222 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

When the save occurs in statement 2, p already has a primary key value, and Django will attempt to use that
primary key on the new database. If the primary key value isn’t in use in the second database, then you

won’t have any problems — the object will be copied to the new database.

However, if the primary key of p is already in use on the second database, the existing object in the second

database will be overridden when p is saved.

You can avoid this in two ways. First, you can clear the primary key of the instance. If an object has no

primary key, Django will treat it as a new object, avoiding any loss of data on the second database:

>>> p = Person(name="Fred")
>>> p.save(using="first")
>>> p.pk = None

>>> p.save(using="second")

The second option is to use the force_insert option to save () to ensure that Django does an SQL INSERT:

>>> p = Person(name="Fred")
>>> p.save(using="first")

>>> p.save(using="second", force_insert=True)

This will ensure that the person named Fred will have the same primary key on both databases. If that

primary key is already in use when you try to save onto the second database, an error will be raised.

Selecting a database to delete from

By default, a call to delete an existing object will be executed on the same database that was used to retrieve

the object in the first place:

>>> u = User.objects.using("legacy_users").get(username="fred")

>>> u.delete()

To specify the database from which a model will be deleted, pass a using keyword argument to the Model.

delete () method. This argument works just like the using keyword argument to save ().

For example, if you're migrating a user from the legacy_users database to the new_users database, you

might use these commands:

>>> user_obj.save(using="new_users')

>>> user_obj.delete(using="legacy users")

3.2. Models and databases 223

Django Documentation, Release 5.2.7.dev20250917080137

Using managers with multiple databases

Use the db_manager () method on managers to give managers access to a non-default database.

For example, say you have a custom manager method that touches the database — User.objects.
create_user(). Because create_user() is a manager method, not a QuerySet method, you can’t do
User.objects.using('new_users').create_user(). (The create_user() method is only available on

User.objects, the manager, not on QuerySet objects derived from the manager.) The solution is to use

db_manager (), like this:

User.objects.db_manager('"new_users").create_user(...)

db_manager () returns a copy of the manager bound to the database you specify.

Using get_queryset () with multiple databases

If you're overriding get _queryset () on your manager, be sure to either call the method on the parent (using
super ()) or do the appropriate handling of the _db attribute on the manager (a string containing the name

of the database to use).

For example, if you want to return a custom QuerySet class from the get_queryset method, you could do

this:

class MyManager (models.Manager) :

def get_queryset():

gs = CustomQuerySet(.model)
if ._db is not None:
gs = gs.using(._db)

return gs

Exposing multiple databases in Django’s admin interface

Django’s admin doesn’t have any explicit support for multiple databases. If you want to provide an admin
interface for a model on a database other than that specified by your router chain, you’ll need to write custom

ModelAdmin classes that will direct the admin to use a specific database for content.

ModelAdmin objects have the following methods that require customization for multiple-database support:

class MultiDBModelAdmin(admin.ModelAdmin) :
using = "other"
def save_model(, request, obj, form, change):
obj.save(using= .using)

(continues on next page)

224 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def delete_model(, request, obj):
obj.delete(using= .using)
def get_queryset(, request):
return () .get_queryset (request) .using(.using)
def formfield_for_foreignkey(, db_field, request, **kwargs):
return () .formfield_for_foreignkey(
db_field, request, using= .using, **kwargs
)
def formfield_for_manytomany(, db_field, request, **xkwargs):
return () .formfield_for_manytomany (
db_field, request, using= .using, **kwargs
)

The implementation provided here implements a multi-database strategy where all objects of a given type
are stored on a specific database (e.g., all User objects are in the other database). If your usage of multiple

databases is more complex, your ModelAdmin will need to reflect that strategy.

InlineModelAdmin objects can be handled in a similar fashion. They require three customized methods:

class MultiDBTabularInline(admin.TabularInline):

using =

def get_queryset(, request):
return () .get_queryset (request) .using(.using)

def formfield_for_foreignkey(, db_field, request, **xkwargs):
return () .formfield_for_foreignkey(

db_field, request, using= .using, **kwargs

(continues on next page)

3.2. Models and databases 225

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

)
def formfield_for_manytomany (, db_field, request, **xkwargs):
return () .formfield_for_manytomany (
db_field, request, using= .using, **kwargs
)

Once you've written your model admin definitions, they can be registered with any Admin instance:

from django.contrib import admin

from myapp.models import Author, Book, Publisher

from myproject.admin import MultiDBModelAdmin, MultiDBTabularInline

class BookInline(MultiDBTabularInline):
model = Book

class PublisherAdmin(MultiDBModelAdmin) :

inlines = [BookInline]

admin.site.register (Author, MultiDBModelAdmin)

admin.site.register (Publisher, PublisherAdmin)

othersite = admin.AdminSite("othersite")
othersite.register(Publisher, MultiDBModelAdmin)

This example sets up two admin sites. On the first site, the Author and Publisher objects are exposed;
Publisher objects have a tabular inline showing books published by that publisher. The second site exposes

just publishers, without the inlines.

226 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Using raw cursors with multiple databases

If you are using more than one database you can use django .db. connections to obtain the connection (and
cursor) for a specific database. django.db. connections is a dictionary-like object that allows you to retrieve

a specific connection using its alias:

from django.db import connections

with connections["my db_alias"].cursor() as cursor:

Limitations of multiple databases

Cross-database relations

Django doesn’t currently provide any support for foreign key or many-to-many relationships spanning mul-
tiple databases. If you have used a router to partition models to different databases, any foreign key and

many-to-many relationships defined by those models must be internal to a single database.

This is because of referential integrity. In order to maintain a relationship between two objects, Django
needs to know that the primary key of the related object is valid. If the primary key is stored on a separate

database, it’s not possible to easily evaluate the validity of a primary key.

If you're using Postgres, SQLite, Oracle, or MySQL with InnoDB, this is enforced at the database integrity
level — database level key constraints prevent the creation of relations that can’t be validated.

However, if you're using MySQL with MyISAM tables, there is no enforced referential integrity; as a result,
you may be able to ‘fake’ cross database foreign keys. However, this configuration is not officially supported

by Django.

Behavior of contrib apps

Several contrib apps include models, and some apps depend on others. Since cross-database relationships are

impossible, this creates some restrictions on how you can split these models across databases:

¢ each one of contenttypes.ContentType, sessions.Session and sites.Site can be stored in any

database, given a suitable router.

¢ auth models — User, Group and Permission — are linked together and linked to ContentType, so they

must be stored in the same database as ContentType.
¢ admin depends on auth, so its models must be in the same database as auth.
e flatpages and redirects depend on sites, so their models must be in the same database as sites.

In addition, some objects are automatically created just after migrate creates a table to hold them in a

database:

o adefault Site,

3.2. Models and databases 227

Django Documentation, Release 5.2.7.dev20250917080137

¢ a ContentType for each model (including those not stored in that database),
¢ the Permissions for each model (including those not stored in that database).

For common setups with multiple databases, it isn’t useful to have these objects in more than one database.
Common setups include primary/replica and connecting to external databases. Therefore, it’s recommended
to write a database router that allows synchronizing these three models to only one database. Use the same

approach for contrib and third-party apps that don’t need their tables in multiple databases.

A Warning

If you're synchronizing content types to more than one database, be aware that their primary keys may

not match across databases. This may result in data corruption or data loss.

3.2.9 Tablespaces

A common paradigm for optimizing performance in database systems is the use of tablespaces to organize

disk layout.

A Warning

Django does not create the tablespaces for you. Please refer to your database engine’s documentation for

details on creating and managing tablespaces.

Declaring tablespaces for tables

A tablespace can be specified for the table generated by a model by supplying the db_tablespace option
inside the model’s class Meta. This option also affects tables automatically created for ManyToManyFields

in the model.

You can use the DEFAULT_ TABLESPACE setting to specify a default value for db_tablespace. This is useful

for setting a tablespace for the built-in Django apps and other applications whose code you cannot control.

Declaring tablespaces for indexes

You can pass the db_tablespace option to an Index constructor to specify the name of a tablespace to use
for the index. For single field indexes, you can pass the db_tablespace option to a Field constructor to
specify an alternate tablespace for the field’s column index. If the column doesn’t have an index, the option

is ignored.
You can use the DEFAULT_ INDEX_TABLESPACE setting to specify a default value for db_tablespace.

If db_tablespaceisn’t specified and you didn’t set DEFAULT INDEX_TABLESPACE, the index is created in the

same tablespace as the tables.

228 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

An example

class TablespaceExample(models.Model):
name = models.CharField(max_length=30, db_index=True, db_tablespace="indexes")
data = models.CharField(max_length=255, db_index=True)
shortcut = models.CharField(max_length=7)
edges = models.ManyToManyField(to="self", db_tablespace="indexes")

class Meta:
db_tablespace = "tables"

indexes = [models.Index(fields=["shortcut"], db_tablespace="other indexes")]

In this example, the tables generated by the TablespaceExample model (i.e. the model table and the many-
to-many table) would be stored in the tables tablespace. The index for the name field and the indexes on
the many-to-many table would be stored in the indexes tablespace. The data field would also generate an
index, but no tablespace for it is specified, so it would be stored in the model tablespace tables by default.

The index for the shortcut field would be stored in the other_indexes tablespace.

Database support
PostgreSQL and Oracle support tablespaces. SQLite, MariaDB and MySQL don’t.

When you use a backend that lacks support for tablespaces, Django ignores all tablespace-related options.

3.2.10 Database access optimization

Django’s database layer provides various ways to help developers get the most out of their databases. This
document gathers together links to the relevant documentation, and adds various tips, organized under a

number of headings that outline the steps to take when attempting to optimize your database usage.

Profile first

As general programming practice, this goes without saying. Find out what queries you are doing and what
they are costing you. Use QuerySet.ezplain() to understand how specific QuerySets are executed by your
database. You may also want to use an external project like django-debug-toolbar, or a tool that monitors

your database directly.

Remember that you may be optimizing for speed or memory or both, depending on your requirements. Some-
times optimizing for one will be detrimental to the other, but sometimes they will help each other. Also, work
that is done by the database process might not have the same cost (to you) as the same amount of work done
in your Python process. It is up to you to decide what your priorities are, where the balance must lie, and

profile all of these as required since this will depend on your application and server.

With everything that follows, remember to profile after every change to ensure that the change is a benefit,
and a big enough benefit given the decrease in readability of your code. All of the suggestions below come

with the caveat that in your circumstances the general principle might not apply, or might even be reversed.

3.2. Models and databases 229

Django Documentation, Release 5.2.7.dev20250917080137

Use standard DB optimization techniques
.. .including;:

¢ Indexes. This is a number one priority, after you have determined from profiling what indexes should
be added. Use Meta. indezes or Field. db_indez to add these from Django. Consider adding indexes
to fields that you frequently query using filter(), ezclude (), order_by (), etc. as indexes may help
to speed up lookups. Note that determining the best indexes is a complex database-dependent topic
that will depend on your particular application. The overhead of maintaining an index may outweigh

any gains in query speed.
e Appropriate use of field types.
We will assume you have done the things listed above. The rest of this document focuses on how to use
Django in such a way that you are not doing unnecessary work. This document also does not address other
optimization techniques that apply to all expensive operations, such as general purpose caching.

Understand QuerySets

Understanding QuerySets is vital to getting good performance with simple code. In particular:

Understand QuerySet evaluation

To avoid performance problems, it is important to understand:
¢ that QuerySets are lazy.
e when they are evaluated.

¢ how the data is held in memory.

Understand cached attributes

As well as caching of the whole QuerySet, there is caching of the result of attributes on ORM objects. In

general, attributes that are not callable will be cached. For example, assuming the example blog models:

>>> entry = Entry.objects.get(id=1)
>>> entry.blog
>>> entry.blog

But in general, callable attributes cause DB lookups every time:

>>> entry = Entry.objects.get(id=1)
>>> entry.authors.all()

>>> entry.authors.all()

Be careful when reading template code - the template system does not allow use of parentheses, but will call

callables automatically, hiding the above distinction.

230 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Be careful with your own custom properties - it is up to you to implement caching when required, for example

using the cached_property decorator.

Use the with template tag

To make use of the caching behavior of QuerySet, you may need to use the with template tag.

Use iterator ()

When you have a lot of objects, the caching behavior of the QuerySet can cause a large amount of memory

to be used. In this case, iterator() may help.

Use explain()

QuerySet. explain () gives you detailed information about how the database executes a query, including in-
dexes and joins that are used. These details may help you find queries that could be rewritten more efficiently,

or identify indexes that could be added to improve performance.

Do database work in the database rather than in Python

For instance:
o At the most basic level, use filter and exclude to do filtering in the database.
e Use F ezpressions to filter based on other fields within the same model.
¢ Use annotate to do aggregation in the database.

If these aren’t enough to generate the SQL you need:

Use RawSQL

A less portable but more powerful method is the RawS@L expression, which allows some SQL to be explicitly

added to the query. If that still isn’t powerful enough:

Use raw SQL

Write your own custom SQL to retrieve data or populate models. Use django.db.connection.queries to

find out what Django is writing for you and start from there.

Retrieve individual objects using a unique, indexed column

There are two reasons to use a column with unique or db_indez when using get () to retrieve individual
objects. First, the query will be quicker because of the underlying database index. Also, the query could run
much slower if multiple objects match the lookup; having a unique constraint on the column guarantees this

will never happen.

So using the example blog models:

3.2. Models and databases 231

Django Documentation, Release 5.2.7.dev20250917080137

‘>>> entry = Entry.objects.get(id=10)

will be quicker than:

‘>>> entry = Entry.objects.get(headline="News Item Title")

because id is indexed by the database and is guaranteed to be unique.

Doing the following is potentially quite slow:

>>> entry = Entry.objects.get(headline__startswith="News")

First of all, headline is not indexed, which will make the underlying database fetch slower.

Second, the lookup doesn’t guarantee that only one object will be returned. If the query matches more than
one object, it will retrieve and transfer all of them from the database. This penalty could be substantial if
hundreds or thousands of records are returned. The penalty will be compounded if the database lives on a

separate server, where network overhead and latency also play a factor.

Retrieve everything at once if you know you will need it

Hitting the database multiple times for different parts of a single ‘set’ of data that you will need all parts
of is, in general, less efficient than retrieving it all in one query. This is particularly important if you have
a query that is executed in a loop, and could therefore end up doing many database queries, when only one

was needed. So:

Use QuerySet.select_related() and prefetch_related()

Understand select_related() and prefetch_related() thoroughly, and use them:

¢ in managers and default managers where appropriate. Be aware when your manager is and is not used;

sometimes this is tricky so don’t make assumptions.

¢ in view code or other layers, possibly making use of prefetch_related_objects () where needed.

Don’t retrieve things you don’t need

Use QuerySet.values() and values_list()

When you only want a dict or 1ist of values, and don’t need ORM model objects, make appropriate usage of
values (). These can be useful for replacing model objects in template code - as long as the dicts you supply

have the same attributes as those used in the template, you are fine.

232 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Use QuerySet.defer() and only()

Use defer() and only() if there are database columns you know that you won’t need (or won’t need in
most cases) to avoid loading them. Note that if you do use them, the ORM will have to go and get them in a

separate query, making this a pessimization if you use it inappropriately.

Don’t be too aggressive in deferring fields without profiling as the database has to read most of the non-text,
non-VARCHAR data from the disk for a single row in the results, even if it ends up only using a few columns.
The defer () and only () methods are most useful when you can avoid loading a lot of text data or for fields

that might take a lot of processing to convert back to Python. As always, profile first, then optimize.

Use QuerySet.contains(obj)

...if you only want to find out if obj is in the queryset, rather than if obj in queryset.

Use QuerySet.count ()

...if you only want the count, rather than doing len(queryset).

Use QuerySet.exists()

...if you only want to find out if at least one result exists, rather than if queryset.
But:

Don’t overuse contains (), count(), and exists()

If you are going to need other data from the QuerySet, evaluate it immediately.

For example, assuming a Group model that has a many-to-many relation to User, the following code is opti-

mal:

members = group.members.all()

if display_group_members:
if members:
if current_user in members:
("You and", (members) - 1, "other users are members of this group.")
else:

("There are", (members), "members in this group.")

for member in members:
(member .username)
else:

("There are no members in this group.")

3.2. Models and databases 233

Django Documentation, Release 5.2.7.dev20250917080137

It is optimal because:
1. Since QuerySets are lazy, this does no database queries if display_group_members is False.
2. Storing group.members.all() in the members variable allows its result cache to be reused.

3. The line if members: causes QuerySet.__bool__() to be called, which causes the group.members.

all() query to be run on the database. If there aren’t any results, it will return False, otherwise True.

4. The line if current_user in members: checks if the user is in the result cache, so no additional

database queries are issued.

5. The use of len(members) calls QuerySet.__len__(), reusing the result cache, so again, no database

queries are issued.
6. The for member loop iterates over the result cache.

In total, this code does either one or zero database queries. The only deliberate optimization performed
is using the members variable. Using QuerySet.exists() for the if, QuerySet.contains() for the in, or

QuerySet.count () for the count would each cause additional queries.

Use QuerySet.update() and delete()

Rather than retrieve a load of objects, set some values, and save them individual, use a bulk SQL UPDATE

statement, via QuerySet.update(). Similarly, do bulk deletes where possible.

Note, however, that these bulk update methods cannot call the save () or delete () methods of individual
instances, which means that any custom behavior you have added for these methods will not be executed,

including anything driven from the normal database object signals.

Use foreign key values directly

If you only need a foreign key value, use the foreign key value that is already on the object you’ve got, rather

than getting the whole related object and taking its primary key. i.e. do:

entry.blog_id

instead of:

entry.blog.id

Don’t order results if you don’t care

Ordering is not free; each field to order by is an operation the database must perform. If a model has a
default ordering (Meta.ordering) and you don’t need it, remove it on a QuerySet by calling order_by ()

with no parameters.

Adding an index to your database may help to improve ordering performance.

234 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Use bulk methods

Use bulk methods to reduce the number of SQL statements.

Create in bulk

When creating objects, where possible, use the bulk_create () method to reduce the number of SQL queries.

For example:

Entry.objects.bulk_create(

L
Entry(headline="This is a test"),

Entry(headline="This is only a test'),

.. .is preferable to:

Entry.objects.create(headline="This is a test'")

Entry.objects.create(headline="This is only a test")

Note that there are a number of caveats to this method, so make sure it’s appropriate for your use case.

Update in bulk

When updating objects, where possible, use the bulk_update () method to reduce the number of SQL queries.

Given a list or queryset of objects:

entries = Entry.objects.bulk_create(

L

Entry(headline="This is a test"),
Entry(headline="This is only a test'),

The following example:

"This is not a test"

entries[0] .headline
entries[1] .headline = "This is no longer a test"

Entry.objects.bulk_update(entries, ["headline'])

.. .is preferable to:

3.2. Models and databases 235

Django Documentation, Release 5.2.7.dev20250917080137

entries[0] .headline = "This is not a test"

entries[0] .save()

entries[1] .headline = "This is no longer a test'

entries[1] .save()

Note that there are a number of caveats to this method, so make sure it’s appropriate for your use case.

Insert in bulk

When inserting objects into ManyToManyFields, use add () with multiple objects to reduce the number of SQL

queries. For example:

my_band.members.add(me, my_friend)

.. .is preferable to:

my_band .members . add (me)

my_band.members.add (my_friend)

...where Band and Artist are models with a many-to-many relationship.

When inserting different pairs of objects into ManyToManyField or when the custom through table is defined,

use bulk_create () method to reduce the number of SQL queries. For example:

PizzaToppingRelationship = Pizza.toppings.through
PizzaToppingRelationship.objects.bulk_create(

L
PizzaToppingRelationship(pizza=my_pizza, topping=pepperoni),
PizzaToppingRelationship(pizza=your_pizza, topping=pepperoni),
PizzaToppingRelationship(pizza=your_pizza, topping=mushroom),
1,

ignore_conflicts=True,

.. .is preferable to:

my_pizza.toppings.add(pepperoni)

your_pizza.toppings.add(pepperoni, mushroom)

...where Pizza and Topping have a many-to-many relationship. Note that there are a number of caveats

to this method, so make sure it’s appropriate for your use case.

236 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Remove in bulk

When removing objects from ManyToManyFields, use remove () with multiple objects to reduce the number

of SQL queries. For example:

my_band .members.remove (me, my_friend)

.. .is preferable to:

my_band .members . remove (me)

my_band.members.remove (my_friend)

...where Band and Artist are models with a many-to-many relationship.

When removing different pairs of objects from ManyToManyFields, use delete() on a § expression with

multiple through model instances to reduce the number of SQL queries. For example:

from django.db.models import Q

PizzaToppingRelationship = Pizza.toppings.through
PizzaToppingRelationship.objects.filter(
Q(pizza=my_pizza, topping=pepperoni)
| Q(pizza=your_pizza, topping=pepperoni)
| Q(pizza=your_pizza, topping=mushroom)
) .delete()

.. .is preferable to:

my_pizza.toppings.remove (pepperoni)

your_pizza.toppings.remove (pepperoni, mushroom)

...where Pizza and Topping have a many-to-many relationship.

3.2.11 Database instrumentation

To help you understand and control the queries issued by your code, Django provides a hook for installing
wrapper functions around the execution of database queries. For example, wrappers can count queries,
measure query duration, log queries, or even prevent query execution (e.g. to make sure that no queries are

issued while rendering a template with prefetched data).

The wrappers are modeled after middleware — they are callables which take another callable as one of their
arguments. They call that callable to invoke the (possibly wrapped) database query, and they can do what
they want around that call. They are, however, created and installed by user code, and so don’t need a

separate factory like middleware do.

3.2. Models and databases 237

Django Documentation, Release 5.2.7.dev20250917080137

Installing a wrapper is done in a context manager — so the wrappers are temporary and specific to some flow

in your code.

As mentioned above, an example of a wrapper is a query execution blocker. It could look like this:

def blocker(*args):

raise Exception("No database access allowed here.")

And it would be used in a view to block queries from the template like so:

from django.db import connection

from django.shortcuts import render

def my_view(request):
context = {...}
template_name = ...
with connection.execute_wrapper (blocker) :

return render(request, template_name, context)

The parameters sent to the wrappers are:

e execute — a callable, which should be invoked with the rest of the parameters in order to execute the
query.
¢ sql —a str, the SQL query to be sent to the database.

e params — a list/tuple of parameter values for the SQL command, or a list/tuple of lists/tuples if the

wrapped call is executemany ().

¢ many — a bool indicating whether the ultimately invoked call is execute() or executemany() (and

whether params is expected to be a sequence of values, or a sequence of sequences of values).

¢ context —a dictionary with further data about the context of invocation. This includes the connection

and cursor.

Using the parameters, a slightly more complex version of the blocker could include the connection name in

the error message:

def blocker(execute, sql, params, many, context):
alias = context['"connection'"].alias

raise Exception("Access to database '{}' blocked here".format(alias))

For a more complete example, a query logger could look like this:

import time

(continues on next page)

238 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

class QueryLogger:
def __init__(K

.queries = []

def __call__(, execute, sql, params, many, context) :
current_query = {"sql": sql, "params': params, "many': many}
start = time.monotonic()
try:
result = execute(sql, params, many, context)

except Exception as e:

current_query["status"] = "error"
current_query["exception'"] = e
raise

else:
current_query["status"] = "ok"

return result

finally:
duration = time.monotonic() - start
current_query["duration"] = duration

.queries.append(current_query)

To use this, you would create a logger object and install it as a wrapper:

from django.db import connection
ql = QueryLogger()
with connection.execute_wrapper(ql):

do_queries()

(ql.queries)

connection.execute_wrapper ()

execute_wrapper (wrapper)

Returns a context manager which, when entered, installs a wrapper around database query executions, and

when exited, removes the wrapper. The wrapper is installed on the thread-local connection object.

wrapper is a callable taking five arguments. It is called for every query execution in the scope of the context
manager, with arguments execute, sql, params, many, and context as described above. It’s expected to call

execute(sql, params, many, context) and return the return value of that call.

3.2. Models and databases 239

Django Documentation, Release 5.2.7.dev20250917080137

3.2.12 Fixtures

A fixture is a collection of files that contain the serialized contents of the database. Each fixture has a unique
name, and the files that comprise the fixture can be distributed over multiple directories, in multiple appli-

cations.

> See also

e How to provide initial data for models

How to produce a fixture

Fixtures can be generated by manage.py dumpdata. It's also possible to generate custom fixtures by directly
using serialization tools or even by handwriting them.

How to use a fixture

Fixtures can be used to pre-populate the database with data for tests:

class MyTestCase(TestCase):

fixtures = ["fixture-label"]

or to provide some initial data using the loaddata command:

django-admin loaddata <fixture label>

How fixtures are discovered

Django will search in these locations for fixtures:
1. In the fixtures directory of every installed application
2. In any directory listed in the FIXTURE_DIRS setting
3. In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match the provided fixture names. If the

named fixture has a file extension, only fixtures of that type will be loaded. For example:

django-admin loaddata mydata.json

would only load JSON fixtures called mydata. The fixture extension must correspond to the registered name

of a serializer (e.g., json or xml).

If you omit the extensions, Django will search all available fixture types for a matching fixture. For example:

240 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

django-admin loaddata mydata

would look for any fixture of any fixture type called mydata. If a fixture directory contained mydata. json,
that fixture would be loaded as a JSON fixture.

The fixtures that are named can include directory components. These directories will be included in the

search path. For example:

django-admin loaddata foo/bar/mydata.json

would search <app_label>/fixtures/foo/bar/mydata.json for each installed application, <dirname>/
foo/bar/mydata. json for each directory in FIXTURE_DIRS, and the literal path foo/bar/mydata. json.

Fixtures loading order

Multiple fixtures can be specified in the same invocation. For example:

django-admin loaddata mammals birds insects

or in a test case class:

class AnimalTestCase(TestCase):

fixtures = ["mammals", "birds", "insects"]

The order in which fixtures are loaded follows the order in which they are listed, whether it’s when using the

management command or when listing them in the test case class as shown above.

In these examples, all the fixtures named mammals from all applications (in the order in which applications are
defined in TNSTALLED_APPS) will be loaded first. Subsequently, all the birds fixtures will be loaded, followed

by all the insects fixtures.

Be aware that if the database backend supports row-level constraints, these constraints will be checked at
the end of the transaction. Any relationships across fixtures may result in a load error if the database con-

figuration does not support deferred constraint checking (refer to the MySQL docs for an example).

How fixtures are saved to the database

When fixture files are processed, the data is saved to the database asis. Model defined save () methods are not
called, and any pre_save or post_save signals will be called with raw=True since the instance only contains
attributes that are local to the model. You may, for example, want to disable handlers that access related

fields that aren’t present during fixture loading and would otherwise raise an exception:

from django.db.models.signals import post_save

from .models import MyModel

(continues on next page)

3.2. Models and databases 241

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def my_handler (*x*kwargs) :

if kwargs(["raw"]:

return

post_save.connect (my_handler, sender=MyModel)

You could also write a decorator to encapsulate this logic:

from functools import wraps

def disable_for_loaddata(signal_handler):

nnn

Decorator that turns off signal handlers when loading fixture data.

nmnn

Quraps(signal_handler)
def wrapper(*args, **kwargs):
if kwargs["raw"]:
return

signal_handler (*args, *xkwargs)

return wrapper

@disable_for_loaddata
def my_handler (*x*kwargs) :

Just be aware that this logic will disable the signals whenever fixtures are deserialized, not just during
loaddata.

Compressed fixtures

Fixtures may be compressed in zip, gz, bz2, 1zma, or xz format. For example:

django-admin loaddata mydata.json

would look for any of mydata.json, mydata.json.zip, mydata. json.gz, mydata. json.bz2, mydata. json.

242 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

lzma, or mydata. json.xz. The first file contained within a compressed archive is used.

Note that if two fixtures with the same name but different fixture type are discovered (for example, if mydata.
json and mydata.xml.gz were found in the same fixture directory), fixture installation will be aborted, and

any data installed in the call to loaddata will be removed from the database.

O MySQL with MyISAM and fixtures

The MyISAM storage engine of MySQL doesn’t support transactions or constraints, so if you use MyISAM,

you won’t get validation of fixture data, or a rollback if multiple transaction files are found.

Database-specific fixtures

If you're in a multi-database setup, you might have fixture data that you want to load onto one database,

but not onto another. In this situation, you can add a database identifier into the names of your fixtures.

For example, if your DATABASES setting has a users database defined, name the fixture mydata.users. json
or mydata.users. json.gz and the fixture will only be loaded when you specify you want to load data into

the users database.

3.2.13 Examples of model relationship API usage
Many-to-many relationships
To define a many-to-many relationship, use ManyToManyField.

In this example, an Article can be published in multiple Publication objects, and a Publication has mul-

tiple Article objects:

from django.db import models

class Publication(models.Model):

title = models.CharField(max_length=30)

class Meta:

ordering = ["title"]

def __str__(K

return .title

class Article(models.Model):
headline = models.CharField(max_length=100)

(continues on next page)

3.2. Models and databases 243

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

publications = models.ManyToManyField(Publication)

class Meta:

ordering = ["headline"]

def __str__(DE

return .headline

What follows are examples of operations that can be performed using the Python API facilities.

Create a few Publication instances:

>>> pl = Publication(title="The Python Journal')
>>> pl.save()

>>> p2 = Publication(title="Science News")

>>> p2.save()

>>> p3 = Publication(title="Science Weekly")

>>> p3.save()

Create an Article:

>>> al = Article(headline="Django lets you build web apps easily")

You can’t associate it with a Publication until it’s been saved:

>>> al.publications.add(pl)

Traceback (most recent call last):

ValueError: "<Article: Django lets you build web apps easily>" needs to have a value for

—field "id" before this many-to-many relationship can be used.

Save it!

‘>>> al.save()

Associate the Article with a Publication:

‘>>> al.publications.add(p1)

Create another Article, and set it to appear in its publications:

>>> a2 = Article(headline="NASA uses Python")
>>> a2.save()

(continues on next page)

244 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> a2.publications.add(pl, p2)
>>> a2.publications.add(p3)

Adding a second time is OK, it will not duplicate the relation:

>>> a2.publications.add(p3)

Adding an object of the wrong type raises TypeError:

>>> a2.publications.add(al)

Traceback (most recent call last):

TypeError: 'Publication' instance expected

Create and add a Publication to an Article in one step using create ():

>>> new_publication = a2.publications.create(title="Highlights for Children'")

Article objects have access to their related Publication objects:

>>> al.publications.all()

<QuerySet [<Publication: The Python Journal>]>

>>> a2.publications.all()

<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,

—<Publication: Science Weekly>, <Publication: The Python Journal>]>

Publication objects have access to their related Article objects:

>>> p2.article_set.all()

<QuerySet [<Article: NASA uses Python>]>

>>> pl.article_set.all()

<QuerySet [<Article: Django lets you build web apps easily>, <Article: NASA uses Python>
o]

>>> Publication.objects.get(id=4).article_set.all()

<QuerySet [<Article: NASA uses Python>]>

Many-to-many relationships can be queried using lookups across relationships:

>>> Article.objects.filter(publications__id=1)

<QuerySet [<Article: Django lets you build web apps easily>, <Article: NASA uses Python>
S1>

>>> Article.objects.filter(publications__pk=1)

(continues on next page)

3.2. Models and databases 245

Django Documentation, Release 5.2.7.dev20250917080137

<QuerySet [<Article:

1>

>>> Article.objects

<QuerySet [<Article:

1>

>>> Article.objects

<QuerySet [<Article:

1>

>>> Article.objects

<QuerySet [<Article:

>>> Article.objects

<QuerySet [<Article:

(continued from previous page)

Django lets you build web apps easily>, <Article

.filter(publications=1)

.filter(publications=p1l)

.filter(publications__title__startswith="Science")

NASA uses Python>, <Article: NASA uses Python>]>

.filter(publications__title__startswith="Science")

NASA uses Python>]>

Django lets you build web apps easily>, <Article:

Django lets you build web apps easily>, <Article:

: NASA uses Python>

NASA uses Python>

NASA uses Python>

.distinct ()

The count () function respects distinct () as well:

>>> Article.objects
2

>>> Article.objects
1

>>> Article.objects

<QuerySet [<Article:

1>

>>> Article.objects

<QuerySet [<Article:

1>

.filter(publications__title__startswith="Science")

.filter(publications__title__startswith="Science")

.filter(publications__in=[1, 2]).distinct()

.filter(publications__in=[pl, p2]).distinct()

Django lets you build web apps easily>, <Article:

Django lets you build web apps easily>, <Article:

.count ()

.distinct () .count ()

NASA uses Python>

NASA uses Python>

Reverse m2m queries are supported (i.e., starting at the table that doesn’t have a ManyToManyField):

>>> Publication.objects
<QuerySet [<Publication:
>>> Publication.objects

<QuerySet [<Publication:

>>> Publication.objects
<QuerySet [<Publication:

—<Publication: Science

.filter(id=1)
The Python Journal>]>
.filter (pk=1)
The Python Journal>]>

.filter(article__headline__startswith="NASA")

Weekly>, <Publication: The Python Journal>]>

Highlights for Children>, <Publication: Science News>,

(continues on next page)

246

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

>>> Publication.objects.filter(article__id=1)

<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter(article__pk=1)

<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter (article=1)

<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter(article=al)

<QuerySet [<Publication: The Python Journal>]>

>>> Publication.objects.filter(article__in=[1, 2]).distinct()

<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
—<Publication: Science Weekly>, <Publication: The Python Journal>]>

>>> Publication.objects.filter(article__in=[al, a2]).distinct()

<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,

—<Publication: Science Weekly>, <Publication: The Python Journal>]>

Excluding a related item works as you would expect, too (although the SQL involved is a little complex):

>>> Article.objects.exclude(publications=p2)

<QuerySet [<Article: Django lets you build web apps easily>]>

If we delete a Publication, its related Article instances won’t be able to access it:

>>> pl.delete()

>>> Publication.objects.all()

<QuerySet [<Publication: Highlights for Children>, <Publication: Science News>,
—<Publication: Science Weekly>]>

>>> al = Article.objects.get (pk=1)

>>> al.publications.all()

<QuerySet []>

If we delete an Article, its related Publication instances won’t be able to access it:

>>> a2.delete()

>>> Article.objects.all()

<QuerySet [<Article: Django lets you build web apps easily>]>
>>> p2.article_set.all()

<QuerySet []>

Adding via the ‘other’ end of an m2m:

3.2. Models and databases 247

Django Documentation, Release 5.2.7.dev20250917080137

>>> a4 = Article(headline="NASA finds intelligent life on Earth")
>>> ad.save()

>>> p2.article_set.add(a4)

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>]>

>>> ad.publications.all()

<QuerySet [<Publication: Science News>]>

Adding via the other end using keywords:

>>> new_article = p2.article_set.create(headline="0Oxygen-free diet works wonders')

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet,
—works wonders>]>

>>> ab = p2.article_set.all() [1]

>>> ab.publications.all()

<QuerySet [<Publication: Science News>]>

Removing Publication from an Article:

>>> ad.publications.remove (p2)

>>> p2.article_set.all()

<QuerySet [<Article: Oxygen-free diet works wonders>]>
>>> a4.publications.all()

<QuerySet []>

And from the other end:

>>> p2.article_set.remove(ab)
>>> p2.article_set.all()
<QuerySet [1>

>>> ab.publications.all()
<QuerySet []1>

Relation sets can be set:

>>> a4.publications.all()

<QuerySet [<Publication: Science News>]>
>>> a4.publications.set([p3])

>>> ad.publications.all()

<QuerySet [<Publication: Science Weekly>]>

Relation sets can be cleared:

248 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> p2.article_set.clear()
>>> p2.article_set.all()
<QuerySet [1>

And you can clear from the other end:

>>> p2.article_set.add (a4, ab)

>>> p2.article_set.all()

<QuerySet [<Article: NASA finds intelligent life on Earth>, <Article: Oxygen-free diet,
—works wonders>]>

>>> a4.publications.all()

<QuerySet [<Publication: Science News>, <Publication: Science Weekly>]>

>>> ad.publications.clear()

>>> a4.publications.all()

<QuerySet [1>

>>> p2.article_set.all()

<QuerySet [<Article: Oxygen-free diet works wonders>]>

Recreate the Article and Publication we have deleted:

>>> pl = Publication(title="The Python Journal')
>>> pl.save()

>>> a2 = Article(headline="NASA uses Python'")
>>> a2.save()

>>> a2.publications.add(pl, p2, p3)

Bulk delete some Publication instances, and the references to deleted publications will no longer be included

in the related entries:

>>> Publication.objects.filter(title__startswith="Science").delete()

>>> Publication.objects.all()

<QuerySet [<Publication: Highlights for Children>, <Publication: The Python Journal>]>
>>> Article.objects.all()

<QuerySet [<Article: Django lets you build web apps easily>, <Article: NASA finds,
—intelligent life on Earth>, <Article: NASA uses Python>, <Article: Oxygen-free diet,,
—works wonders>]>

>>> a2.publications.all()

<QuerySet [<Publication: The Python Journal>]>

Bulk delete some articles - references to deleted objects should go:

3.2. Models and databases 249

Django Documentation, Release 5.2.7.dev20250917080137

>>> q = Article.objects.filter (headline__startswith="Django")
>>> (@

<QuerySet [<Article: Django lets you build web apps easily>]>
>>> q.delete()

After the delete(), the QuerySet cache needs to be cleared, and the referenced objects should be gone:

>>> (@
<QuerySet []>
>>> pl.article_set.all()

<QuerySet [<Article: NASA uses Python>]>

Many-to-one relationships
To define a many-to-one relationship, use Foreignkey.

In this example, a Reporter can be associated with many Article objects, but an Article can only have

one Reporter object:

from django.db import models

class Reporter(models.Model):
first_name = models.CharField(max_length=30)
last_name = models.CharField(max_length=30)

email = models.EmailField()

def __str__(DE

return f"{ .first_name} { .last_name}"

class Article(models.Model) :
headline = models.CharField(max_length=100)
models.DateField ()
reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

pub_date

def __str__(DE:

return .headline

class Meta:

ordering = ["headline"]

What follows are examples of operations that can be performed using the Python API facilities.

250 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Create a few Reporters:

>>> r = Reporter(first_name="John", last_name="Smith", email="john@example.com")

>>> r.save()

>>> r2 = Reporter(first_name="Paul', last_name="Jones'", email="paulQexample.com")

>>> r2.save()

Create an Article:

>>> from datetime import date
>>> a = Article(id=None, headline="This is a test', pub_date=date(2005, 7, 27),.
—reporter=r)

>>> a.save()

>>> a.reporter.id
1

>>> a.reporter

<Reporter: John Smith>

Note that you must save an object before it can be assigned to a foreign key relationship. For example,

creating an Article with unsaved Reporter raises ValueError:

>>> r3 = Reporter(first_name="John'", last_name="Smith", email="johnGexample.com")
>>> Article.objects.create(
headline="This is a test", pub_date=date(2005, 7, 27), reporter=r3
)

Traceback (most recent call last):

ValueError: save() prohibited to prevent data loss due to unsaved related object

— 'reporter'.

Article objects have access to their related Reporter objects:

>>> r = a.reporter

Create an Article via the Reporter object:

>>> new_article = r.article_set.create(
headline="John's second story'", pub_date=date(2005, 7, 29)
)

>>> new_article

(continues on next page)

3.2. Models and databases 251

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
<Article: John's second story>
>>> new_article.reporter
<Reporter: John Smith>
>>> new_article.reporter.id
1

Create a new article:

>>> new_article2 = Article.objects.create(
headline="Paul's story", pub_date=date(2006, 1, 17), reporter=r

)
>>> new_article2.reporter
<Reporter: John Smith>
>>> new_article2.reporter.id
1
>>> r.article_set.all()
<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a

~test>]>

Add the same article to a different article set - check that it moves:

>>> r2.article_set.add(new_article2)
>>> new_article2.reporter.id

2

>>> new_article2.reporter

<Reporter: Paul Jones>

Adding an object of the wrong type raises TypeError:

>>> r.article_set.add(r2)

Traceback (most recent call last):

TypeError: 'Article' instance expected, got <Reporter: Paul Jones>

>>> r.article_set.all()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> r2.article_set.all()

<QuerySet [<Article: Paul's story>]>

>>> r.article_set.count()
2

(continues on next page)

252 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> r2.article_set.

1

(continued from previous page)

count ()

Note that in the last example the article has moved from John to Paul.

Related managers support field lookups as well. The APT automatically follows relationships as far as you

need. Use double underscores to separate relationships. This works as many levels deep as you want. There’s

no limit. For example:

>>> r.article_set.filter(headline__startswith="This")

<QuerySet [<Article: This is a test>]>

Find all Articles
>>> Article.objects

<QuerySet [<Article

for any Reporter whose first name is "John".
.filter(reporter__first_name="John")

: John's second story>, <Article: This is a test>]>

Exact match is implied here:

>>> Article.objects

<QuerySet [<Article

.filter(reporter__first_name="John")

: John's second story>, <Article: This is a test>]>

Query twice over the related field. This translates to an AND condition in the WHERE clause:

>>> Article.objects

<QuerySet [<Article

.filter(reporter__first_name="John", reporter__last_name="Smith")

: John's second story>, <Article: This is a test>]>

For the related lookup you can supply a primary key value or pass the related object explicitly:

>>> Article.objects

<QuerySet [<Article:

>>> Article.objects

<QuerySet [<Article:

>>> Article.objects

<QuerySet [<Article:

>>> Article.objects

<QuerySet [<Article:

—test>]>

>>> Article.objects

<QuerySet [<Article:

~test>]>

.filter(reporter__pk=1)

John's second story>, <Article: This is a test>]>
.filter(reporter=1)

John's second story>, <Article: This is a test>]>
.filter(reporter=r)

John's second story>, <Article: This is a test>]>

.filter(reporter__in=[1, 2]).distinct()

John's second story>, <Article: Paul's story>, <Article: This is a;

.filter(reporter__in=[r, r2]).distinct()

John's second story>, <Article: Paul's story>, <Article: This is a;

3.2. Models and databases 253

Django Documentation, Release 5.2.7.dev20250917080137

You can also use a queryset instead of a literal list of instances:

>>> Article.objects.filter(
reporter__in=Reporter.objects.filter (first_name="John")
) .distinct ()

<QuerySet [<Article: John's second story>, <Article: This is a test>]>

Querying in the opposite direction:

>>> Reporter.objects.filter(article__pk=1)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article=1)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article=a)
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__headline__startswith="This")

<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>]>
>>> Reporter.objects.filter(article__headline__startswith="This") .distinct ()
<QuerySet [<Reporter: John Smith>]>

Counting in the opposite direction works in conjunction with distinct():

>>> Reporter.objects.filter(article__headline__startswith="This").count ()

&

>>> Reporter.objects.filter(article__headline__startswith="This").distinct().count()
1

Queries can go round in circles:

>>> Reporter.objects.filter(article__reporter__first_name__startswith="John")

<QuerySet [<Reporter: John Smith>, <Reporter: John Smith>, <Reporter: John Smith>,
—<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__reporter__first_name__startswith="John").distinct ()
<QuerySet [<Reporter: John Smith>]>

>>> Reporter.objects.filter(article__reporter=r).distinct()

<QuerySet [<Reporter: John Smith>]>

If you delete a reporter, their articles will be deleted (assuming that the ForeignKey was defined with django.
db.models.ForeignKey.on_delete set to CASCADE, which is the default)

>>> Article.objects.all()

<QuerySet [<Article: John's second story>, <Article: Paul's story>, <Article: This is a,

(continues on next page)

254 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
—test>]>
>>> Reporter.objects.order_by("first name')
<QuerySet [<Reporter: John Smith>, <Reporter: Paul Jones>]>
>>> r2.delete()
>>> Article.objects.all()
<QuerySet [<Article: John's second story>, <Article: This is a test>]>
>>> Reporter.objects.order_by("first name")

<QuerySet [<Reporter: John Smith>]>

You can delete using a JOIN in the query:

>>> Reporter.objects.filter(article__headline__startswith="This") .delete()
>>> Reporter.objects.all()

<QuerySet []>

>>> Article.objects.all()

<QuerySet []>

One-to-one relationships
To define a one-to-one relationship, use OneToOneField.

In this example, a Place optionally can be a Restaurant:

from django.db import models

class Place(models.Model):
name = models.CharField(max_length=50)
address = models.CharField(max_length=80)

def str__(E

return f"{ .name} the place"

class Restaurant (models.Model):
place = models.OneToOneField(
Place,
on_delete=models.CASCADE,
primary_key=True,
)

serves_hot_dogs = models.BooleanField(default=False)

(continues on next page)

3.2. Models and databases 255

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

serves_pizza = models.BooleanField(default=False)

def __str__(DE:

return "Ys the restaurant" % .place.name

class Waiter(models.Model):
restaurant = models.ForeignKey(Restaurant, on_delete=models.CASCADE)

name = models.CharField(max_length=50)

def __str__(DE:

return "%s the waiter at %s" % (.name, .restaurant)

What follows are examples of operations that can be performed using the Python API facilities.

Create a couple of Places:

>>> pl = Place(name="Demon Dogs", address="944 W. Fullerton')
>>> pl.save()
>>> p2 = Place(name="Ace Hardware", address="1013 N. Ashland")

>>> p2.save()

Create a Restaurant. Pass the “parent” object as this object’s primary key:

>>> r = Restaurant(place=pl, serves_hot_dogs=True, serves_pizza=False)

>>> r.save()

A Restaurant can access its place:

>>> r.place

<Place: Demon Dogs the place>

A Place can access its restaurant, if available:

>>> pl.restaurant

<Restaurant: Demon Dogs the restaurant>

p2 doesn’t have an associated restaurant:

>>> from django.core.exceptions import ObjectDoesNotExist
>>> try:
p2.restaurant

(continues on next page)

256 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
. except ObjectDoesNotExist:

("There is no restaurant here.")

There is no restaurant here.

You can also use hasattr to avoid the need for exception catching;:

>>> (p2, "restaurant")
False

Set the place using assignment notation. Because place is the primary key on Restaurant, the save will create

a new restaurant:

>>> r.place = p2

>>> r.save()

>>> p2.restaurant

<Restaurant: Ace Hardware the restaurant>
>>> r.place

<Place: Ace Hardware the place>

Set the place back again, using assignment in the reverse direction:

>>> pl.restaurant = r
>>> pl.restaurant

<Restaurant: Demon Dogs the restaurant>

Note that you must save an object before it can be assigned to a one-to-one relationship. For example,

creating a Restaurant with unsaved Place raises ValueError:

>>> p3 = Place(name="Demon Dogs", address="944 V. Fullerton'")
>>> Restaurant.objects.create(place=p3, serves_hot_dogs=True, serves_pizza=False)

Traceback (most recent call last):

ValueError: save() prohibited to prevent data loss due to unsaved related object 'place'.

Restaurant.objects.all() returns the Restaurants, not the Places. Note that there are two restaurants - Ace

Hardware the Restaurant was created in the call to r.place = p2:

>>> Restaurant.objects.all()
<QuerySet [<Restaurant: Demon Dogs the restaurant>, <Restaurant: Ace Hardware the,

—restaurant>]>

Place.objects.all() returns all Places, regardless of whether they have Restaurants:

3.2. Models and databases 257

Django Documentation, Release 5.2.7.dev20250917080137

>>> Place.objects.order_by('name"

<QuerySet [<Place: Ace Hardware the place>, <Place: Demon Dogs the place>]>

You can query the models using lookups across relationships:

>>> Restaurant.objects.get(place=pl)

<Restaurant: Demon Dogs the restaurant>

>>> Restaurant.objects.get(place__pk=1)

<Restaurant: Demon Dogs the restaurant>

>>> Restaurant.objects.filter(place__name__startswith="Demon")
<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

>>> Restaurant.objects.exclude(place__address__contains="Ashland")

<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

This also works in reverse:

>>> Place.objects.get (pk=1)

<Place: Demon Dogs the place>

>>> Place.objects.get(restaurant__place=p1l)

<Place: Demon Dogs the place>

>>> Place.objects.get (restaurant=r)

<Place: Demon Dogs the place>

>>> Place.objects.get(restaurant__place__name__startswith="Demon")

<Place: Demon Dogs the place>

If you delete a place, its restaurant will be deleted (assuming that the OneToOneField was defined with
on_delete set to CASCADE, which is the default):

>>> p2.delete()
(2, {'one_to_one.Restaurant': 1, 'one_to_one.Place': 1})
>>> Restaurant.objects.all()

<QuerySet [<Restaurant: Demon Dogs the restaurant>]>

Add a Waiter to the Restaurant:

>>> w = r.waiter_set.create(name="Joe")
>>> W

<Waiter: Joe the waiter at Demon Dogs the restaurant>

Query the waiters:

>>> Waiter.objects.filter(restaurant__place=pl)

(continues on next page)

258 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>
>>> Waiter.objects.filter(restaurant__place__name__startswith="Demon")

<QuerySet [<Waiter: Joe the waiter at Demon Dogs the restaurant>]>

3.3 Handling HTTP requests

Information on handling HTTP requests in Django:

3.3.1 URL dispatcher

A clean, elegant URL scheme is an important detail in a high-quality web application. Django lets you design

URLs however you want, with no framework limitations.

See Cool URIs don’t change, by World Wide Web creator Tim Berners-Lee, for excellent arguments on why
URLs should be clean and usable.

Overview

To design URLs for an app, you create a Python module informally called a URLconf (URL configuration).
This module is pure Python code and is a mapping between URL path expressions to Python functions (your

views).

This mapping can be as short or as long as needed. It can reference other mappings. And, because it’s pure

Python code, it can be constructed dynamically.

Django also provides a way to translate URLs according to the active language. See the internationalization

documentation for more information.

How Django processes a request

When a user requests a page from your Django-powered site, this is the algorithm the system follows to

determine which Python code to execute:

1. Django determines the root URLconf module to use. Ordinarily, this is the value of the ROOT URLCONF
setting, but if the incoming HttpRequest object has a urlconf attribute (set by middleware), its value
will be used in place of the ROOT URLCONF setting.

2. Django loads that Python module and looks for the variable urlpatterns. This should be a sequence

of django.urls.path() andfor django.urls.re_path () instances.

3. Django runs through each URL pattern, in order, and stops at the first one that matches the requested
URL, matching against path_info.

4. Once one of the URL patterns matches, Django imports and calls the given view, which is a Python

function (or a class-based view). The view gets passed the following arguments:

¢ An instance of HttpRequest.

3.3. Handling HTTP requests 259

Django Documentation, Release 5.2.7.dev20250917080137

o If the matched URL pattern contained no named groups, then the matches from the regular ex-

pression are provided as positional arguments.

e The keyword arguments are made up of any named parts matched by the path expression that

are provided, overridden by any arguments specified in the optional kwargs argument to django.

urls.path() or django.urls.re_path().

5. If no URL pattern matches; or if an exception is raised during any point in this process, Django invokes

an appropriate error-handling view. See Error handling below.

Example

Here’s a sample URLconf:

from django.urls import path
from . import views
urlpatterns = [

path("articles/2003/", views.special_case_2003),

path("articles/<int:year>/", views.year_archive),

path("articles/<int:year>/<int:month>/", views.month_archive),

path("articles/<int:year>/<int:month>/<slug:slug>/", views.article_detail),

Notes:

¢ To capture a value from the URL, use angle brackets.

e Captured values can optionally include a converter type. For example, use <int :name> to capture an

integer parameter. If a converter isn’t included, any string, excluding a / character, is matched.

e There’s no need to add a leading slash, because every URL has that. For example, it’s articles, not

/articles.

Example requests:

e Arequest to /articles/2005/03/ would match the third entry in the list. Django would call the func-

tion views.month_archive(request, year=2005, month=3).

e /articles/2003/ would match the first pattern in the list, not the second one, because the patterns

are tested in order, and the first one is the first test to pass. Feel free to exploit the ordering to insert

special cases like this. Here, Django would call the function views.special_case_2003(request)

e /articles/2003 would not match any of these patterns, because each pattern requires that the URL

end with a slash.

e /articles/2003/03/building-a-django-site/ would match the

final pattern. Django

would call the function views.article_detail (request, year=2003, month=3,

260

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

slug="building-a-django-site").

Path converters
The following path converters are available by default:

¢ str - Matches any non-empty string, excluding the path separator, '/'. This is the default if a con-

verter isn’t included in the expression.
¢ int - Matches zero or any positive integer. Returns an int.

¢ slug - Matches any slug string consisting of ASCII letters or numbers, plus the hyphen and underscore

characters. For example, building-your-1st-django-site.

e uuid - Matches a formatted UUID. To prevent multiple URLs from mapping to the
same page, dashes must be included and letters must be lowercase. For example,
075194d3-6885-417e-a8a8-6c931e272f00. Returns a UUID instance.

¢ path - Matches any non-empty string, including the path separator, '/'. This allows you to match
against a complete URL path rather than a segment of a URL path as with str.

Registering custom path converters
For more complex matching requirements, you can define your own path converters.
A converter is a class that includes the following;:

¢ A regex class attribute, as a string.

¢ A to_python(self, value) method, which handles converting the matched string into the type that
should be passed to the view function. It should raise ValueError if it can’t convert the given value.
A ValueError is interpreted as no match and as a consequence a 404 response is sent to the user unless

another URL pattern matches.

e A to_url(self, value) method, which handles converting the Python type into a string to be used
in the URL. It should raise ValueError if it can’t convert the given value. A ValueError is interpreted
as no match and as a consequence reverse () will raise NoReverseMatch unless another URL pattern

matches.

For example:

class FourDigitYearConverter:

regex = "[0-9]{4}"

def to_python(, value):
return (value)
def to_url(, value):

return "7044" % value

3.3. Handling HTTP requests 261

Django Documentation, Release 5.2.7.dev20250917080137

Register custom converter classes in your URLconf using register_converter():

from django.urls import path, register_converter

from . import converters, views

register_converter (converters.FourDigitYearConverter, "yyyy'")
urlpatterns = [

path("articles/2003/", views.special_case_2003),

path("articles/<yyyy:year>/", views.year_archive),

L)

Deprecated since version 5.1: Overriding existing converters with django.urls.register_converter() is

deprecated.

Using regular expressions

If the paths and converters syntax isn’t sufficient for defining your URL patterns, you can also use regular

expressions. To do so, use re_path () instead of path().

In Python regular expressions, the syntax for named regular expression groups is (?P<name>pattern), where

name is the name of the group and pattern is some pattern to match.

Here’s the example URLconf from earlier, rewritten using regular expressions:

from django.urls import path, re_path

from . import views

urlpatterns = [
path("articles/2003/", views.special_case_2003),
re_path(r" articles/(7P<year>[0-9]{4})/$", views.year_archive),
re_path(r" articles/(?P<year>[0-9]1{4})/(?P<month>[0-9]1{2})/$", views.month_archive),
re_path(
r""articles/(?P<year>[0-9]{4})/(?P<month>[0-9]1{2})/(?P<slug>[\w-1+)/$",
views.article_detail,

),

This accomplishes roughly the same thing as the previous example, except:

e The exact URLs that will match are slightly more constrained. For example, the year 10000 will no

longer match since the year integers are constrained to be exactly four digits long.

262 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

e Each captured argument is sent to the view as a string, regardless of what sort of match the regular

expression makes.

When switching from using path () to re_path () or vice versa, it’s particularly important to be aware that

the type of the view arguments may change, and so you may need to adapt your views.

Using unnamed regular expression groups

As well as the named group syntax, e.g. (?P<year>[0-9]1{4}), you can also use the shorter unnamed group,

e.g. ([0-9]1{4}).

This usage isn’t particularly recommended as it makes it easier to accidentally introduce errors between the

intended meaning of a match and the arguments of the view.

In either case, using only one style within a given regex is recommended. When both styles are mixed, any

unnamed groups are ignored and only named groups are passed to the view function.

Nested arguments

Regular expressions allow nested arguments, and Django will resolve them and pass them to the view. When
reversing, Django will try to fill in all outer captured arguments, ignoring any nested captured arguments.

Consider the following URL patterns which optionally take a page argument:

from django.urls import re_path

urlpatterns = [
re_path(r" blog/(page-([0-9]1+)/)7$", blog_articles),

re_path(r" comments/(7:page- (7P<page_number>[0-9]+)/)7$", comments),

Both patterns use nested arguments and will resolve: for example, blog/page-2/ will result in a match to
blog_articles with two positional arguments: page-2/ and 2. The second pattern for comments will match
comments/page-2/ with keyword argument page_number set to 2. The outer argument in this case is a non-

capturing argument (7:...).

The blog_articles view needs the outermost captured argument to be reversed, page-2/ or no arguments

in this case, while comments can be reversed with either no arguments or a value for page_number.

Nested captured arguments create a strong coupling between the view arguments and the URL as illustrated
by blog_articles: the view receives part of the URL (page-2/) instead of only the value the view is inter-
ested in. This coupling is even more pronounced when reversing, since to reverse the view we need to pass

the piece of URL instead of the page number.

As a rule of thumb, only capture the values the view needs to work with and use non-capturing arguments

when the regular expression needs an argument but the view ignores it.

3.3. Handling HTTP requests 263

Django Documentation, Release 5.2.7.dev20250917080137

What the URLconf searches against

The URLconf searches against the requested URL, as a normal Python string. This does not include GET or

POST parameters, or the domain name.

For example, in a request to https://www.example.com/myapp/, the URLconf will look for myapp/.

In a request to https://www.example.com/myapp/?page=3, the URLconf will look for myapp/.

The URLconf doesn’t look at the request method. In other words, all request methods — POST, GET, HEAD, etc.
— will be routed to the same function for the same URL.

Specifying defaults for view arguments

A convenient trick is to specify default parameters for your views’ arguments. Here’s an example URLconf

and view:

from django.urls import path
from . import views
urlpatterns = [

path("blog/", views.page),
path("blog/page<int:num>/", views.page),

def page(request, num=1):

In the above example, both URL patterns point to the same view — views.page — but the first pattern doesn’t
capture anything from the URL. If the first pattern matches, the page () function will use its default argu-

ment for num, 1. If the second pattern matches, page () will use whatever num value was captured.

Performance

Django processes regular expressions in the urlpatterns list which is compiled the first time it’s accessed.

Subsequent requests use the cached configuration via the URL resolver.

264 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Syntax of the urlpatterns variable

urlpatterns should be a sequence of path() and/or re_path () instances.

Error handling

When Django can’t find a match for the requested URL, or when an exception is raised, Django invokes an

error-handling view.

The views to use for these cases are specified by four variables. Their default values should suffice for most

projects, but further customization is possible by overriding their default values.
See the documentation on customizing error views for the full details.

Such values can be set in your root URLconf. Setting these variables in any other URLconf will have no
effect.

Values must be callables, or strings representing the full Python import path to the view that should be called

to handle the error condition at hand.

The variables are:
e handler400 - See django.conf.urls.handlers00.
e handler403 - See django.conf.urls.handler403.
e handler404 — See django.conf.urls.handlers04.

¢ handler500 — See django. conf.urls. handler500.

Including other URLconfs

At any point, your urlpatterns can “include” other URLconf modules. This essentially “roots” a set of URLs

below other ones.

For example, here’s an excerpt of the URLconf for the Django website itself. It includes a number of other
URLconfs:

from django.urls import include, path

urlpatterns = [

path("community/", include("aggregator.urls")),

path("contact/", include("contact.urls")),

Whenever Django encounters include (), it chops off whatever part of the URL matched up to that point

and sends the remaining string to the included URLconf for further processing.

3.3. Handling HTTP requests 265

Django Documentation, Release 5.2.7.dev20250917080137

Another possibility is to include additional URL patterns by using a list of path () instances. For example,
consider this URLconf:

from django.urls import include, path

from apps.main import views as main_views

from credit import views as credit_views

extra_patterns = [
path("reports/", credit_views.report),
path("reports/<int:id>/", credit_views.report),

path("charge/", credit_views.charge),

]

urlpatterns = [
path("", main_views.homepage),
path("help/", include("apps.help.urls")),
path("credit/", include(extra_patterns)),

]

In this example, the /credit/reports/ URL will be handled by the credit_views.report () Django view.

This can be used to remove redundancy from URLconfs where a single pattern prefix is used repeatedly. For

example, consider this URLconf:

from django.urls import path

from . import views

urlpatterns = [
path("<page_slug>-<page_id>/history/", views.history),
path("<page_slug>-<page_id>/edit/", views.edit),
path("<page_slug>-<page_id>/discuss/", views.discuss),

path("<page_slug>-<page_id>/permissions/", views.permissions),

We can improve this by stating the common path prefix only once and grouping the suffixes that differ:

from django.urls import include, path

from . import views

urlpatterns = [
path(

"<page_slug>-<page_id>/",
(continues on next page)

266 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
include(
[
path("history/", views.history),
path("edit/", views.edit),
path("discuss/", views.discuss),

path("permissions/", views.permissions),

Captured parameters

An included URLconf receives any captured parameters from parent URLconfs, so the following example is

valid:

from django.urls import include, path

urlpatterns = [

path("<username>/blog/", include("foo.urls.blog")),

from django.urls import path

from . import views

urlpatterns = [
path("", views.blog.index),

path("archive/", views.blog.archive),

In the above example, the captured "username" variable is passed to the included URLconf, as expected.

Passing extra options to view functions
URLconfs have a hook that lets you pass extra arguments to your view functions, as a Python dictionary.

The path () function can take an optional third argument which should be a dictionary of extra keyword

arguments to pass to the view function.

For example:

3.3. Handling HTTP requests 267

Django Documentation, Release 5.2.7.dev20250917080137

from django.urls import path

from . import views

urlpatterns = [

path("blog/<int:year>/", views.year_archive, {"foo": "bar'"}),

In this example, for a request to /blog/2005/, Django will call views.year_archive(request, year=2005,

foo='bar').

This technique is used in the syndication framework to pass metadata and options to views.

© Dealing with conflicts

It’s possible to have a URL pattern which captures named keyword arguments, and also passes arguments
with the same names in its dictionary of extra arguments. When this happens, the arguments in the

dictionary will be used instead of the arguments captured in the URL.

Passing extra options to include ()

Similarly, you can pass extra options to include () and each line in the included URLconf will be passed the

extra options.
For example, these two URLconf sets are functionally identical:

Set one:

from django.urls import include, path

urlpatterns = [
path("blog/", include("inner"), {"blog_id": 3}),

from django.urls import path

from mysite import views

urlpatterns = [
path("archive/", views.archive),

path("about/", views.about),

Set two:

268 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from django.urls import include, path

from mysite import views

urlpatterns = [

path("blog/", include("inner")),

from django.urls import path

urlpatterns = [
path("archive/", views.archive, {"blog id": 33}),
path("about/", views.about, {"blog_id": 3}),

Note that extra options will always be passed to every line in the included URLconf, regardless of whether
the line’s view actually accepts those options as valid. For this reason, this technique is only useful if you're

certain that every view in the included URLconf accepts the extra options you're passing.

Reverse resolution of URLs

A common need when working on a Django project is the possibility to obtain URLs in their final forms either
for embedding in generated content (views and assets URLs, URLs shown to the user, etc.) or for handling

of the navigation flow on the server side (redirections, etc.)

It is strongly desirable to avoid hard-coding these URLs (a laborious, non-scalable and error-prone strategy).
Equally dangerous is devising ad-hoc mechanisms to generate URLs that are parallel to the design described

by the URLconf, which can result in the production of URLs that become stale over time.

In other words, what’s needed is a DRY mechanism. Among other advantages it would allow evolution of

the URL design without having to go over all the project source code to search and replace outdated URLs.

The primary piece of information we have available to get a URL is an identification (e.g. the name) of the
view in charge of handling it. Other pieces of information that necessarily must participate in the lookup of

the right URL are the types (positional, keyword) and values of the view arguments.

Django provides a solution such that the URL mapper is the only repository of the URL design. You feed it

with your URLconf and then it can be used in both directions:

e Starting with a URL requested by the user/browser, it calls the right Django view providing any argu-

ments it might need with their values as extracted from the URL.

¢ Starting with the identification of the corresponding Django view plus the values of arguments that

would be passed to it, obtain the associated URL.

3.3. Handling HTTP requests 269

Django Documentation, Release 5.2.7.dev20250917080137

The first one is the usage we’ve been discussing in the previous sections. The second one is what is known as

reverse resolution of URLs, reverse URL matching, reverse URL lookup, or simply URL reversing,.

Django provides tools for performing URL reversing that match the different layers where URLs are needed:
¢ In templates: Using the url template tag.
¢ In Python code: Using the reverse () function.
e In higher level code related to handling of URLs of Django model instances: The get_absolute_url ()

method.

Examples

Consider again this URLconf entry:

from django.urls import path

from . import views

urlpatterns = [

path("articles/<int:year>/", views.year_archive, name='"news-year-archive"),

According to this design, the URL for the archive corresponding to year nnnn is /articles/<nnnn>/.

You can obtain these in template code by using:

2012 Archive

for yearvar in year_list

{{ yearvar Archive</1i>
endfor

Or in Python code:

from django.http import HttpResponseRedirect

from django.urls import reverse

def redirect_to_year(request):

(continues on next page)

270 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

year = 2006

return HttpResponseRedirect (reverse('news-year-archive", args=(year,)))

If, for some reason, it was decided that the URLs where content for yearly article archives are published at

should be changed then you would only need to change the entry in the URLconf.

In some scenarios where views are of a generic nature, a many-to-one relationship might exist between URLs
and views. For these cases the view name isn’t a good enough identifier for it when comes the time of reversing

URLs. Read the next section to know about the solution Django provides for this.

Naming URL patterns

In order to perform URL reversing, you’ll need to use named URL patterns as done in the examples above.
The string used for the URL name can contain any characters you like. You are not restricted to valid Python

names.

When naming URL patterns, choose names that are unlikely to clash with other applications’ choice of names.
If you call your URL pattern comment and another application does the same thing, the URL that reverse ()

finds depends on whichever pattern is last in your project’s urlpatterns list.

Putting a prefix on your URL names, perhaps derived from the application name (such as myapp-comment

instead of comment), decreases the chance of collision.

You can deliberately choose the same URL name as another application if you want to override a view. For
example, a common use case is to override the LoginView. Parts of Django and most third-party apps assume
that this view has a URL pattern with the name login. If you have a custom login view and give its URL the
name login, reverse() will find your custom view as long as it’s in urlpatterns after django.contrib.
auth.urls is included (if that’s included at all).

You may also use the same name for multiple URL patterns if they differ in their arguments. In addition
to the URL name, reverse () matches the number of arguments and the names of the keyword arguments.
Path converters can also raise ValueError to indicate no match, see Registering custom path converters for
details.

URL namespaces

Introduction

URL namespaces allow you to uniquely reverse named URL patterns even if different applications use the
same URL names. It’s a good practice for third-party apps to always use namespaced URLs (as we did in the
tutorial). Similarly, it also allows you to reverse URLs if multiple instances of an application are deployed.
In other words, since multiple instances of a single application will share named URLSs, namespaces provide

a way to tell these named URLs apart.

3.3. Handling HTTP requests 271

Django Documentation, Release 5.2.7.dev20250917080137

Django applications that make proper use of URL namespacing can be deployed more than once for a par-
ticular site. For example django. contrib.admin has an AdminSite class which allows you to deploy more
than one instance of the admin. In a later example, we’ll discuss the idea of deploying the polls application
from the tutorial in two different locations so we can serve the same functionality to two different audiences

(authors and publishers).
A URL namespace comes in two parts, both of which are strings:

application namespace
This describes the name of the application that is being deployed. Every instance of a single application
will have the same application namespace. For example, Django’s admin application has the somewhat

predictable application namespace of 'admin'.

instance namespace
This identifies a specific instance of an application. Instance namespaces should be unique across your
entire project. However, an instance namespace can be the same as the application namespace. This is
used to specify a default instance of an application. For example, the default Django admin instance

has an instance namespace of 'admin'.

Namespaced URLs are specified using the ':' operator. For example, the main index page of the admin
application is referenced using 'admin:index'. This indicates a namespace of 'admin', and a named URL

of 'index"'.

Namespaces can also be nested. The named URL 'sports:polls:index' would look for a pattern named

'index' in the namespace 'polls' that is itself defined within the top-level namespace 'sports'.

Reversing namespaced URLs

When given a namespaced URL (e.g. 'polls:index') to resolve, Django splits the fully qualified name into

parts and then tries the following lookup:

1. First, Django looks for a matching application namespace (in this example, 'polls'). This will yield a

list of instances of that application.

2. If there is a current application defined, Django finds and returns the URL resolver for that instance.

The current application can be specified with the current_app argument to the reverse () function.

The url template tag uses the namespace of the currently resolved view as the current application in
a RequestContezt. You can override this default by setting the current application on the request.

current_app attribute.

3. If there is no current application, Django looks for a default application instance. The default applica-
tion instance is the instance that has an instance namespace matching the application namespace (in

this example, an instance of polls called 'polls’).

4. TIf there is no default application instance, Django will pick the last deployed instance of the application,

whatever its instance name may be.

272 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

5. If the provided namespace doesn’t match an application namespace in step 1, Django will attempt a

direct lookup of the namespace as an instance namespace.

If there are nested namespaces, these steps are repeated for each part of the namespace until only the view

name is unresolved. The view name will then be resolved into a URL in the namespace that has been found.

Example

To show this resolution strategy in action, consider an example of two instances of the polls application from
the tutorial: one called 'author-polls' and one called 'publisher-polls’'. Assume we have enhanced that

application so that it takes the instance namespace into consideration when creating and displaying polls.

Listing 2: urls.py

from django.urls import include, path

urlpatterns = [
path("author-polls/", include("polls.urls", namespace="author-polls")),

path("publisher-polls/", include("polls.urls", namespace="publisher-polls")),

Listing 3: polls/urls.py

from django.urls import path

from . import views

app_name = "polls"
urlpatterns = [
path("", views.IndexView.as_view(), name="index"),

path("<int:pk>/", views.DetailView.as_view(), name='"detail"),

L)

Using this setup, the following lookups are possible:

o If one of the instances is current - say, if we were rendering the detail page in the instance
'author-polls' - 'polls:index' will resolve to the index page of the 'author-polls' instance; i.e.

both of the following will result in "/author-polls/".

In the method of a class-based view:

reverse("polls:index", current_app= .request.resolver_match.namespace)

and in the template:

3.3. Handling HTTP requests 273

Django Documentation, Release 5.2.7.dev20250917080137

[url 'polls:index'

o If there is no current instance - say, if we were rendering a page somewhere else on the site -
'polls:index' will resolve to the last registered instance of polls. Since there is no default instance
(instance namespace of 'polls'), the last instance of polls that is registered will be used. This would

be 'publisher-polls’ since it’s declared last in the urlpatterns.

¢ 'author-polls:index' will always resolve to the index page of the instance 'author-polls' (and

likewise for 'publisher-polls"').

If there were also a default instance - i.e., an instance named 'polls' - the only change from above would be
in the case where there is no current instance (the second item in the list above). In this case 'polls:index’

would resolve to the index page of the default instance instead of the instance declared last in urlpatterns.

URL namespaces and included URLconfs

Application namespaces of included URLconfs can be specified in two ways.

Firstly, you can set an app_name attribute in the included URLconf module, at the same level as the
urlpatterns attribute. You have to pass the actual module, or a string reference to the module, to

include (), not the list of urlpatterns itself.

Listing 4: polls/urls.py

from django.urls import path

from . import views

app_name = "polls"

urlpatterns = [
path("", views.IndexView.as_view(), name='"index"),
path("<int:pk>/", views.DetailView.as_view(), name='"detail"),

*

Listing 5: urls.py

from django.urls import include, path

urlpatterns = [

path("polls/", include("polls.urls")),

The URLs defined in polls.urls will have an application namespace polls.

274 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Secondly, you can include an object that contains embedded namespace data. If you include() a list of
path() or re_path() instances, the URLs contained in that object will be added to the global namespace.

However, you can also include () a 2-tuple containing;:

(<list of path()/re_path() instances>, <application namespace>)

For example:

from django.urls import include, path

from . import views

polls_patterns = (

[
path("", views.IndexView.as_view(), name="index"),
path("<int:pk>/", views.DetailView.as_view(), name='"detail"),
1,
"polls",

urlpatterns = [

path("polls/", include(polls_patterns)),

This will include the nominated URL patterns into the given application namespace.

The instance namespace can be specified using the namespace argument to include (). If the instance names-
pace is not specified, it will default to the included URLconf’s application namespace. This means it will also

be the default instance for that namespace.

3.3.2 Writing views

A view function, or view for short, is a Python function that takes a web request and returns a web response.
This response can be the HTML contents of a web page, or a redirect, or a 404 error, or an XML document,
or an image . . . or anything, really. The view itself contains whatever arbitrary logic is necessary to return
that response. This code can live anywhere you want, as long as it’s on your Python path. There’s no other
requirement-no “magic,” so to speak. For the sake of putting the code somewhere, the convention is to put

views in a file called views.py, placed in your project or application directory.

3.3. Handling HTTP requests 275

Django Documentation, Release 5.2.7.dev20250917080137

A simple view

Here’s a view that returns the current date and time, as an HTML document:

from django.http import HttpResponse

import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = '<html lang="en"><body>It is now %s.</body></html>' % now

return HttpResponse (html)

Let’s step through this code one line at a time:

e First, we import the class Ht tpResponse from the django.http module, along with Python’s datetime
library.

e Next, we define a function called current_datetime. This is the view function. Each view function

takes an HttpRequest object as its first parameter, which is typically named request.

Note that the name of the view function doesn’t matter; it doesn’t have to be named in a certain way
in order for Django to recognize it. We're calling it current_datetime here, because that name clearly

indicates what it does.

o The view returns an HttpResponse object that contains the generated response. Each view function is

responsible for returning an HttpResponse object. (There are exceptions, but we’ll get to those later.)

O Django’s Time Zone

Django includes a TIME_ZONE setting that defaults to America/Chicago. This probably isn’t where you

live, so you might want to change it in your settings file.

Mapping URLs to views

So, to recap, this view function returns an HTML page that includes the current date and time. To display

this view at a particular URL, you’ll need to create a URLconf; see URL dispatcher for instructions.

Returning errors

Django provides help for returning HTTP error codes. There are subclasses of HttpResponse for a number
of common HTTP status codes other than 200 (which means “OK”). You can find the full list of available
subclasses in the request/response documentation. Return an instance of one of those subclasses instead of a

normal HttpResponse in order to signify an error. For example:

276 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from django.http import HttpResponse, HttpResponseNotFound

def my_view(request):

if foo:
return HttpResponseNotFound('<hi>Page not found</hi>")
else:

return HttpResponse('<hl>Page was found</hi1>")

There isn’t a specialized subclass for every possible HT'TP response code, since many of them aren’t going to
be that common. However, as documented in the At tpResponse documentation, you can also pass the HT TP
status code into the constructor for HttpResponse to create a return class for any status code you like. For

example:

from django.http import HttpResponse

def my_view(request):

return HttpResponse(status=201)

Because 404 errors are by far the most common HTTP error, there’s an easier way to handle those errors.

The Http404 exception
class django.http.Http404

When you return an error such as HttpResponseNotFound, you're responsible for defining the HTML of the

resulting error page:

return HttpResponseNotFound('<hl>Page not found</hi>")

For convenience, and because it’s a good idea to have a consistent 404 error page across your site, Django
provides an Http404 exception. If you raise Http404 at any point in a view function, Django will catch it

and return the standard error page for your application, along with an HTTP error code 404.

Example usage:

from django.http import Http404

from django.shortcuts import render

(continues on next page)

3.3. Handling HTTP requests 277

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

from polls.models import Poll

def detail(request, poll_id):
try:
p = Poll.objects.get (pk=poll_id)
except Poll.DoesNotExist:
raise Http404("Poll does not exist")

return render(request, "polls/detail . html", {"poll": p})

In order to show customized HTML when Django returns a 404, you can create an HTML template named
404 .html and place it in the top level of your template tree. This template will then be served when DEBUG
is set to False.

When DEBUG is True, you can provide a message to Http404 and it will appear in the standard 404 debug
template. Use these messages for debugging purposes; they generally aren’t suitable for use in a production
404 template.

Customizing error views

The default error views in Django should suffice for most web applications, but can easily be overridden if
you need any custom behavior. Specify the handlers as seen below in your URLconf (setting them anywhere

else will have no effect).

The page_not_found() view is overridden by handlers04:

‘ handler404 = "mysite.views.my_custom_page_not_found_view"

The server_error() view is overridden by handler500:

‘ handler500 = "mysite.views.my_custom_error_view"

The permission_denied() view is overridden by handler403:

‘ handler403 = "mysite.views.my_custom_permission_denied_view"

The bad_request () view is overridden by handler400:

‘ handler400 = "mysite.views.my_custom_bad_request_view"

> See also

Use the CSRF_FAILURE_VIEW setting to override the CSRF error view.

278 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Testing custom error views

To test the response of a custom error handler, raise the appropriate exception in a test view. For example:

from django.core.exceptions import PermissionDenied
from django.http import HttpResponse
from django.test import SimpleTestCase, override_settings

from django.urls import path

def response_error_handler(request, exception=None):

return HttpResponse('"Error handler content", status=403)

def permission_denied_view(request):

raise PermissionDenied

urlpatterns = [

path("403/", permission_denied_view),

handler403 = response_error_handler

Qoverride_settings (ROOT_URLCONF=__name__)
class CustomErrorHandlerTests(SimpleTestCase):
def test_handler_renders_template_response()

response = .client.get ("/403/")

.assertContains(response, "Error handler content', status_code=403)

Async views

As well as being synchronous functions, views can also be asynchronous (“async”) functions, normally de-
fined using Python’s async def syntax. Django will automatically detect these and run them in an async

context. However, you will need to use an async server based on ASGI to get their performance benefits.

Here’s an example of an async view:

import datetime

from django.http import HttpResponse
(continues on next page)

3.3. Handling HTTP requests 279

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

async def current_datetime(request):
now = datetime.datetime.now()
html = '<html lang="en"><body>It is now %s.</body></html>' % now
return HttpResponse (html)

You can read more about Django’s async support, and how to best use async views, in Asynchronous support.

3.3.3 View decorators
Django provides several decorators that can be applied to views to support various HTTP features.

See Decorating the class for how to use these decorators with class-based views.

Allowed HTTP methods

The decorators in django.views. decorators.http can be used to restrict access to views based on the re-
quest method. These decorators will return a django.http.HttpResponseNotAllowed if the conditions are
not met.

require_http_methods (request method list)

Decorator to require that a view only accepts particular request methods. Usage:

from django.views.decorators.http import require_http_methods

Q@require_http_methods(["GET", "POST"])

def my_view(request):

pass

.

Note that request methods should be in uppercase.

require_GET()

Decorator to require that a view only accepts the GET method.

require_POST()

Decorator to require that a view only accepts the POST method.

require_safe()
Decorator to require that a view only accepts the GET and HEAD methods. These methods are com-
monly considered “safe” because they should not have the significance of taking an action other than

retrieving the requested resource.

280 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

-
O Note

Web servers should automatically strip the content of responses to HEAD requests while leav-
ing the headers unchanged, so you may handle HEAD requests exactly like GET requests in your

views. Since some software, such as link checkers, rely on HEAD requests, you might prefer using

require_safe instead of require_GET.

Conditional view processing

The following decorators in django.views.decorators.http can be used to control caching behavior on

particular views.
condition(etag func=None, last_modified func=None)
conditional_page()

This decorator provides the conditional GET operation handling of ConditionalGetMiddleware to a

view.
etag(etag_func)

last_modified(last modified func)

These decorators can be used to generate ETag and Last-Modified headers; see conditional view pro-
cessing.
GZip compression
The decorators in django.views.decorators. gzip control content compression on a per-view basis.
gzip_page ()

This decorator compresses content if the browser allows gzip compression. It sets the Vary header

accordingly, so that caches will base their storage on the Accept-Encoding header.

Vary headers

The decorators in django.views.decorators.vary can be used to control caching based on specific request

headers.
vary_on_cookie (func)

vary_on_headers (*headers)

The Vary header defines which request headers a cache mechanism should take into account when

building its cache key.

See using vary headers.

3.3. Handling HTTP requests 281

Django Documentation, Release 5.2.7.dev20250917080137

Caching
The decorators in django.views. decorators. cache control server and client-side caching.

cache_control (**kwargs)

This decorator patches the response’s Cache-Control header by adding all of the keyword arguments

to it. See patch_cache_control () for the details of the transformation.

never_cache (view_func)

This decorator adds an Expires header to the current date/time.

This decorator adds a Cache-Control: max-age=0, no-cache, no-store, must-revalidate,

private header to a response to indicate that a page should never be cached.

Each header is only added if it isn’t already set.

Common

The decorators in django.views.decorators. common allow per-view customization of CommonMiddleware

behavior.

no_append_slash()
This decorator allows individual views to be excluded from APPEND SLASH URL normalization.

3.3.4 File Uploads

When Django handles a file upload, the file data ends up placed in request.FILES (for more on the request
object see the documentation for request and response objects). This document explains how files are stored

on disk and in memory, and how to customize the default behavior.

A Warning

There are security risks if you are accepting uploaded content from untrusted users! See the security

guide’s topic on User-uploaded content for mitigation details.

Basic file uploads

Consider a form containing a FileField:

Listing 6: forms.py

from django import forms

class UploadFileForm(forms.Form) :
(continues on next page)

282 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
title = forms.CharField(max_length=50)
file = forms.FileField()

A view handling this form will receive the file data in request. FILES, which is a dictionary containing a key
for each FileField (or ImageField, or other FileField subclass) in the form. So the data from the above

form would be accessible as request .FILES['file'].

Note that request.FILES will only contain data if the request method was POST, at least one file field was
actually posted, and the <form> that posted the request has the attribute enctype="multipart/form-data".
Otherwise, request . FILES will be empty.

Most of the time, you’ll pass the file data from request into the form as described in Binding uploaded files

to a form. This would look something like:

Listing 7: views.py

from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import UploadFileForm

from somewhere import handle_uploaded_file

def upload_file(request):
if request.method == "POST":
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():
handle_uploaded_file(request.FILES["file"])
return HttpResponseRedirect("/success/url/")
else:
form = UploadFileForm()

return render(request, "upload.html", {"form": form})

Notice that we have to pass request. FILES into the form’s constructor; this is how file data gets bound into

a form.

Here’s a common way you might handle an uploaded file:

def handle_uploaded_file(f):
with ("some/file/name.txt", "wb+") as destination:
for chunk in f.chunks():

destination.write (chunk)

3.3. Handling HTTP requests 283

Django Documentation, Release 5.2.7.dev20250917080137

Looping over UploadedFile. chunks () instead of using read () ensures that large files don’t overwhelm your

System’s memory.

There are a few other methods and attributes available on UploadedFile objects; see UploadedFile for a

complete reference.

Handling uploaded files with a model

If you're saving a file on a Model with a FileField, using a ModelForm makes this process much easier. The
file object will be saved to the location specified by the upload_to argument of the corresponding FileField

when calling form.save():

from django.http import HttpResponseRedirect
from django.shortcuts import render

from .forms import ModelFormWithFileField

def upload_file(request):
if request.method == "POST":
form = ModelFormWithFileField(request.POST, request.FILES)

if form.is_valid():

form.save()
return HttpResponseRedirect("/success/url/")
else:
form = ModelFormWithFileField()

return render(request, "upload.html", {"form": form})

If you are constructing an object manually, you can assign the file object from request. FILES to the file field

in the model:

from django.http import HttpResponseRedirect
from django.shortcuts import render
from .forms import UploadFileForm

from .models import ModelWithFileField

def upload_file(request):
if request.method == "POST":
form = UploadFileForm(request.POST, request.FILES)
if form.is_valid():
instance = ModelWithFileField(file_field=request.FILES["file"])

instance.save ()
(continues on next page)

284 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
return HttpResponseRedirect("/success/url/")
else:
form = UploadFileForm()

return render(request, "upload.html", {"form": form})

If you are constructing an object manually outside of a request, you can assign a File like object to the
FileField:

from django.core.management.base import BaseCommand

from django.core.files.base import ContentFile

class MyCommand (BaseCommand) :
def handle(, *args, **options):
content_file = ContentFile(b"Hello world!", name="hello-world.txt")
instance = ModelWithFileField(file_field=content_file)

instance.save()

Uploading multiple files

If you want to upload multiple files using one form field, create a subclass of the field’s widget and set its

allow_multiple_selected class attribute to True.

In order for such files to be all validated by your form (and have the value of the field include them all), you

will also have to subclass FileField. See below for an example.

© Multiple file field

Django is likely to have a proper multiple file field support at some point in the future.

Listing 8: forms.py

from django import forms

class MultipleFileInput(forms.ClearableFileInput):

allow_multiple_selected = True

class MultipleFileField(forms.FileField):

def __init__(, *args, **xkwargs):

(continues on next page)

3.3. Handling HTTP requests 285

Django Documentation, Release 5.2.7.dev20250917080137

kwargs.setdefault ("widget", MultipleFileInput())

() .__init__(*args, **kwargs)

def clean(, data, initial=None):
single_file_clean = () .clean
if (data, (s)):

result = [single_file_clean(d, initial) for d in datal

else:

result = [single_file_clean(data, initial)]

return result

class FileFieldForm(forms.Form) :

file field = MultipleFileField()

(continued from previous page)

Then override the form_valid () method of your FormView subclass to handle multiple file uploads:

Listing 9: views.py

from django.views.generic.edit import FormView

from .forms import FileFieldForm

class FileFieldFormView(FormView) :
form_class = FileFieldForm
template_name = "upload.html"

success_url = "..."
def form_valid(, form):
files = form.cleaned_data['"file field"]

for f in files:

return () .form_valid(form)

A Warning

with a form field related to a model FileField.

This will allow you to handle multiple files at the form level only. Be aware that you cannot use it to put

multiple files on a single model instance (in a single field), for example, even if the custom widget is used

286

Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Upload Handlers

When a user uploads a file, Django passes off the file data to an upload handler — a small class that handles file
data as it gets uploaded. Upload handlers are initially defined in the FILE_ UPLOAD_HANDLERS setting, which
defaults to:

"django.core.files.uploadhandler.MemoryFileUploadHandler",
"django.core.files.uploadhandler.TemporaryFileUploadHandler",

Together MemoryFileUploadHandler and TemporaryFileUploadHandler provide Django’s default file up-

load behavior of reading small files into memory and large ones onto disk.

You can write custom handlers that customize how Django handles files. You could, for example, use custom
handlers to enforce user-level quotas, compress data on the fly, render progress bars, and even send data to
another storage location directly without storing it locally. See Writing custom upload handlers for details

on how you can customize or completely replace upload behavior.

Where uploaded data is stored

Before you save uploaded files, the data needs to be stored somewhere.

By default, if an uploaded file is smaller than 2.5 megabytes, Django will hold the entire contents of the
upload in memory. This means that saving the file involves only a read from memory and a write to disk

and thus is very fast.

However, if an uploaded file is too large, Django will write the uploaded file to a temporary file stored in your
system’s temporary directory. On a Unix-like platform this means you can expect Django to generate a file
called something like /tmp/tmpzfp616.upload. If an upload is large enough, you can watch this file grow in

size as Django streams the data onto disk.

These specifics — 2.5 megabytes; /tmp; etc. — are “reasonable defaults” which can be customized as described

in the next section.

Changing upload handler behavior

There are a few settings which control Django’s file upload behavior. See File Upload Settings for details.

Modifying upload handlers on the fly

Sometimes particular views require different upload behavior. In these cases, you can override upload han-
dlers on a per-request basis by modifying request.upload_handlers. By default, this list will contain the
upload handlers given by FILE_UPLOAD_HANDLERS, but you can modify the list as you would any other list.

For instance, suppose you've written a ProgressBarUploadHandler that provides feedback on upload

progress to some sort of AJAX widget. You’d add this handler to your upload handlers like this:

3.3. Handling HTTP requests 287

Django Documentation, Release 5.2.7.dev20250917080137

request.upload_handlers.insert (0, ProgressBarUploadHandler (request))

You'd probably want to use 1ist.insert () in this case (instead of append ()) because a progress bar handler

would need to run before any other handlers. Remember, the upload handlers are processed in order.

If you want to replace the upload handlers completely, you can assign a new list:

request.upload_handlers = [ProgressBarUploadHandler(request)]

O Note

You can only modify upload handlers before accessing request . POST or request . FILES — it doesn’t make
sense to change upload handlers after upload handling has already started. If you try to modify request.
upload_handlers after reading from request .POST or request . FILES Django will throw an error.

Thus, you should always modify uploading handlers as early in your view as possible.

Also, request .POST is accessed by CsrfViewMiddleware which is enabled by default. This means you
will need to use csrf_ezempt () on your view to allow you to change the upload handlers. You will then
need to use csrf_protect () on the function that actually processes the request. Note that this means
that the handlers may start receiving the file upload before the CSRF checks have been done. Example

code:

from django.views.decorators.csrf import csrf_exempt, csrf_protect

Q@csrf_exempt
def upload_file_view(request):
request.upload_handlers.insert (0, ProgressBarUploadHandler (request))

return _upload_file_view(request)

Q@csrf_protect

def _upload_file_view(request):

If you are using a class-based view, you will need to use csrf_ezempt () on its dispatch () method and

csrf_protect () on the method that actually processes the request. Example code:

288 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from django.utils.decorators import method_decorator
from django.views import View

from django.views.decorators.csrf import csrf_exempt, csrf_protect

@method_decorator (csrf_exempt, name="dispatch")
class UploadFileView(View) :
def setup(, request, *args, **kwargs):
request.upload_handlers.insert (0, ProgressBarUploadHandler (request))

() .setup(request, *args, **kwargs)

@method_decorator(csrf_protect)

def post(, request, *args, **kwargs):

3.3.5 Django shortcut functions

The package django . shortcuts collects helper functions and classes that “span” multiple levels of MVC. In
other words, these functions/classes introduce controlled coupling for convenience’s sake.

render ()

render (request, template name, context=None, content_type=None, status=None, using=None)

Combines a given template with a given context dictionary and returns an HttpResponse object with
that rendered text.

Django does not provide a shortcut function which returns a TemplateResponse because the construc-

tor of TemplateResponse offers the same level of convenience as render ().

Required arguments

request

The request object used to generate this response.

template_name
The full name of a template to use or sequence of template names. If a sequence is given, the first
template that exists will be used. See the template loading documentation for more information on

how templates are found.

3.3. Handling HTTP requests 289

Django Documentation, Release 5.2.7.dev20250917080137

Optional arguments

context
A dictionary of values to add to the template context. By default, this is an empty dictionary. If a

value in the dictionary is callable, the view will call it just before rendering the template.

content_type
The MIME type to use for the resulting document. Defaults to 'text/html'.

status

The status code for the response. Defaults to 200.

using

The NAME of a template engine to use for loading the template.

Example

The following example renders the template myapp/index.html with the MIME type application/

zhtml+zml

from django.shortcuts import render

def my_view(request):

return render(
request,
"myapp/index.html",
{
"foo": "bar",
¥,
content_type="application/xhtml+xml",

This example is equivalent to:

from django.http import HttpResponse

from django.template import loader

def my_view(request):

ot
]

loader.get_template('"myapp/index.html")
'{”fOO” . Ilbarll}

(¢}
1]

(continues on next page)

290 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

return HttpResponse(t.render(c, request), content_type="application/xhtml+xml")

redirect ()

redirect (to, *args, permanent=False, preserve request=False, **kwargs)

Returns an HttpResponseRedirect to the appropriate URL for the arguments passed.

The arguments could be:
¢ A model: the model’s get_absolute_url () function will be called.
¢ A view name, possibly with arguments: reverse () will be used to reverse-resolve the name.
e An absolute or relative URL, which will be used as-is for the redirect location.

By default, a temporary redirect is issued with a 302 status code. If permanent=True, a permanent

redirect is issued with a 301 status code.

If preserve_request=True, the response instructs the user agent to preserve the method and body of
the original request when issuing the redirect. In this case, temporary redirects use a 307 status code,

and permanent redirects use a 308 status code. This is better illustrated in the following table:

permanent preserve_request HTTP status code

True False 301
False False 302
False True 307
True True 308

The argument preserve_request was added.

Examples

You can use the redirect () function in a number of ways.

1. By passing some object; that object’s get_absolute_url () method will be called to figure out the redi-
rect URL:
from django.shortcuts import redirect
def my_view(request):
obj = MyModel.objects.get(...)
return redirect(obj)
3.3. Handling HTTP requests 291

Django Documentation, Release 5.2.7.dev20250917080137

2. By passing the name of a view and optionally some positional or keyword arguments; the URL will be

reverse resolved using the reverse () method:

def my_view(request):

return redirect("some-view-name", foo="bar")

3. By passing a hardcoded URL to redirect to:

def my_view(request):

return redirect("/some/url/")

This also works with full URLs:

def my_view(request):

return redirect("https://example.com/")

By default, redirect () returns a temporary redirect. All of the above forms accept a permanent argument;

if set to True a permanent redirect will be returned:

def my_view(request):

obj = MyModel.objects.get(...)

return redirect(obj, permanent=True)

Additionally, the preserve_request argument can be used to preserve the original HTTP method:

def my_view(request):

obj = MyModel.objects.get(...)
if request.method in ("POST", "PUT"):

return redirect(obj, preserve_request=True)

get_object_or_404()
get_object_or_404 (klass, *args, **kwargs)

aget_object_or_404 (klass, *args, **kwargs)

Asynchronous version: aget_object_or_404()

292 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Calls get () on a given model manager, but it raises Http404 instead of the model’s DoesNotEzist

exception.

Arguments

klass

A Model class, a Manager, or a QuerySet instance from which to get the object.

*xargs

) objects.

*xkwargs

Lookup parameters, which should be in the format accepted by get () and filter ().

Example

The following example gets the object with the primary key of 1 from MyModel:

from django.shortcuts import get_object_or_404

def my_view(request):

obj = get_object_or_404(MyModel, pk=1)

This example is equivalent to:

from django.http import Http404

def my_view(request):
try:
obj = MyModel.objects.get (pk=1)
except MyModel.DoesNotExist:
raise Http404("No MyModel matches the given query.")

The most common use case is to pass a Model, as shown above. However, you can also pass a QuerySet

instance:

queryset = Book.objects.filter(title__startswith="M")
get_object_or_404(queryset, pk=1)

The above example is a bit contrived since it’s equivalent to doing;:

get_object_or_404(Book, title__startswith="M", pk=1)

3.3. Handling HTTP requests 293

Django Documentation, Release 5.2.7.dev20250917080137

but it can be useful if you are passed the queryset variable from somewhere else.

Finally, you can also use a Manager. This is useful for example if you have a custom manager:

get_object_or_404(Book.dahl_objects, title="Matilda')

You can also use related managers:

author = Author.objects.get(name="Roald Dahl")
get_object_or_404(author.book_set, title="Matilda'")

Note: As with get (), a MultipleObjectsReturned exception will be raised if more than one object is found.

get_list_or_404()
get_list_or_404 (klass, *args, **kwargs)

aget_list_or_404 (klass, *args, **kwargs)

Asynchronous version: aget_list_or_404()

Returns the result of filter() on a given model manager cast to a list, raising #t tp404 if the resulting

list is empty.

Arguments

klass

A Model, Manager or QuerySet instance from which to get the list.

*xargs

) objects.

**kwargs

Lookup parameters, which should be in the format accepted by get () and filter ().

Example

The following example gets all published objects from MyModel:

from django.shortcuts import get_list_or_404

def my_view(request):

my_objects = get_list_or_404(MyModel, published=True)

This example is equivalent to:

294 Chapter 3.

Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from django.http import Http404

def my_view(request):
my_objects = (MyModel.objects.filter (published=True))
if not my_objects:

raise Http404("No MyModel matches the given query.")

3.3.6 Generic views

See Built-in class-based views API.

3.3.7 Middleware

Middleware is a framework of hooks into Django’s request/response processing. It’s a light, low-level “plugin”

system for globally altering Django’s input or output.

Each middleware component is responsible for doing some specific function. For example, Django includes

a middleware component, AuthenticationMiddleware, that associates users with requests using sessions.

This document explains how middleware works, how you activate middleware, and how to write your own
middleware. Django ships with some built-in middleware you can use right out of the box. They’re docu-

mented in the built-in middleware reference.

Writing your own middleware

A middleware factory is a callable that takes a get_response callable and returns a middleware. A middle-

ware is a callable that takes a request and returns a response, just like a view.

A middleware can be written as a function that looks like this:

def simple_middleware(get_response):

def middleware(request):

response = get_response(request)

return response
(continues on next page)

3.3. Handling HTTP requests 295

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

return middleware

Or it can be written as a class whose instances are callable, like this:

class SimpleMiddleware:
def __init__(, get_response):

.get_response = get_response

def __call__(, request):

response = .get_response(request)

return response

The get_response callable provided by Django might be the actual view (if this is the last listed middleware)
or it might be the next middleware in the chain. The current middleware doesn’t need to know or care what

exactly it is, just that it represents whatever comes next.

The above is a slight simplification — the get_response callable for the last middleware in the chain won’t
be the actual view but rather a wrapper method from the handler which takes care of applying view mid-
dleware, calling the view with appropriate URL arguments, and applying template-response and exception

middleware.

Middleware can either support only synchronous Python (the default), only asynchronous Python, or both.
See Asynchronous support for details of how to advertise what you support, and know what kind of request

you are getting.

Middleware can live anywhere on your Python path.

__init__(get_response)

Middleware factories must accept a get_response argument. You can also initialize some global state for

the middleware. Keep in mind a couple of caveats:

¢ Django initializes your middleware with only the get_response argument, so you can’t define

__init__(Q) asrequiring any other arguments.

296 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

e Unlike the __call__() method which is called once per request, __init__() is called only once, when

) ——

the web server starts.

Marking middleware as unused

It’s sometimes useful to determine at startup time whether a piece of middleware should be used. In these
cases, your middleware’s __init__ () method may raise MiddlewareNotUsed. Django will then remove that
middleware from the middleware process and log a debug message to the django.request logger when DEBUG

is True.

Activating middleware
To activate a middleware component, add it to the MIDDLEWARE list in your Django settings.

In MIDDLEWARE, each middleware component is represented by a string: the full Python path to the mid-
dleware factory’s class or function name. For example, here’s the default value created by django-admin

startproject:

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",

"django.middleware.clickjacking.XFrameOptionsMiddleware",

A Django installation doesn’t require any middleware — MIDDLEWARE can be empty, if you’d like — but it’s

strongly suggested that you at least use CommonMiddleware.

The order in MIDDLEWARE matters because a middleware can depend on other middleware. For instance,
AuthenticationMiddleware stores the authenticated user in the session; therefore, it must run after
SessionMiddleware. See Middleware ordering for some common hints about ordering of Django middle-

ware classes.

Middleware order and layering

During the request phase, before calling the view, Django applies middleware in the order it’s defined in
MIDDLEWARE, top-down.

You can think of it like an onion: each middleware class is a “layer” that wraps the view, which is in the core
of the onion. If the request passes through all the layers of the onion (each one calls get_response to pass
the request in to the next layer), all the way to the view at the core, the response will then pass through every

layer (in reverse order) on the way back out.

3.3. Handling HTTP requests 297

Django Documentation, Release 5.2.7.dev20250917080137

If one of the layers decides to short-circuit and return a response without ever calling its get_response,
none of the layers of the onion inside that layer (including the view) will see the request or the response. The

response will only return through the same layers that the request passed in through.

Other middleware hooks

Besides the basic request/response middleware pattern described earlier, you can add three other special

methods to class-based middleware:

process_view()
process_view(request, view_func, view args, view kwargs)

request is an HttpRequest object. view_func is the Python function that Django is about to use. (It’s the
actual function object, not the name of the function as a string.) view_args is a list of positional arguments
that will be passed to the view, and view_kwargs is a dictionary of keyword arguments that will be passed

to the view. Neither view_args nor view_kwargs include the first view argument (request).
process_view() is called just before Django calls the view.

It should return either None or an HttpResponse object. If it returns None, Django will continue processing
this request, executing any other process_view () middleware and, then, the appropriate view. If it returns
an HttpResponse object, Django won’t bother calling the appropriate view; it’ll apply response middleware

to that HttpResponse and return the result.

O Note

Accessing request. POST inside middleware before the view runs or in process_view() will prevent any
view running after the middleware from being able to modify the upload handlers for the request, and

should normally be avoided.

The CsrfViewMiddleware class can be considered an exception, as it provides the csrf_ezempt () and

csrf_protect () decorators which allow views to explicitly control at what point the CSRF validation

should occur.

process_exception()
process_exception(request, exception)

request is an HttpRequest object. exception is an Exception object raised by the view function.

Django calls process_exception() when a view raises an exception. process_exception() should return
either None or an HttpResponse object. If it returns an HttpResponse object, the template response and
response middleware will be applied and the resulting response returned to the browser. Otherwise, default

exception handling kicks in.

298 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Again, middleware are run in reverse order during the response phase, which includes process_exception.
If an exception middleware returns a response, the process_exception methods of the middleware classes

above that middleware won’t be called at all.

process_template_response ()
process_template_response (request, response)

request is an HttpRequest object. response is the TemplateResponse object (or equivalent) returned by a

Django view or by a middleware.

process_template_response () is called just after the view has finished executing, if the response instance

has a render () method, indicating that it is a TemplateResponse or equivalent.

It must return a response object that implements a render method. It could alter the given response by
changing response.template_name and response.context_data, or it could create and return a brand-

new TemplateResponse or equivalent.

You don’t need to explicitly render responses — responses will be automatically rendered once all template

response middleware has been called.

Middleware are run in reverse order during the response phase, which includes

process_template_response().

Dealing with streaming responses

Unlike HttpResponse, StreamingHt tpResponse does not have a content attribute. As a result, middleware
can no longer assume that all responses will have a content attribute. If they need access to the content,

they must test for streaming responses and adjust their behavior accordingly:

if response.streaming:
response.streaming_content = wrap_streaming_content (response.streaming_content)
else:

response.content = alter_content(response.content)

O Note

streaming_content should be assumed to be too large to hold in memory. Response middleware may

wrap it in a new generator, but must not consume it. Wrapping is typically implemented as follows:

def wrap_streaming_content (content):
for chunk in content:

yield alter_content (chunk)

StreamingHttpResponse allows both synchronous and asynchronous iterators. The wrapping function must

3.3. Handling HTTP requests 299

Django Documentation, Release 5.2.7.dev20250917080137

match. Check StreamingHttpResponse. is_async if your middleware needs to support both types of itera-

tor.

Exception handling

Django automatically converts exceptions raised by the view or by middleware into an appropriate HTTP
response with an error status code. Certain exceptions are converted to 4xx status codes, while an unknown

exception is converted to a 500 status code.

This conversion takes place before and after each middleware (you can think of it as the thin film in between
each layer of the onion), so that every middleware can always rely on getting some kind of HTTP response
back from calling its get_response callable. Middleware don’t need to worry about wrapping their call to
get_responsein a try/except and handling an exception that might have been raised by a later middleware
or the view. Even if the very next middleware in the chain raises an Http404 exception, for example, your

middleware won’t see that exception; instead it will get an HttpResponse object with a status_code of 404.

You can set DEBUG_PROPAGATE_EXCEPTIONS to True to skip this conversion and propagate exceptions upward.

Asynchronous support

Middleware can support any combination of synchronous and asynchronous requests. Django will adapt

requests to fit the middleware’s requirements if it cannot support both, but at a performance penalty.

By default, Django assumes that your middleware is capable of handling only synchronous requests. To

change these assumptions, set the following attributes on your middleware factory function or class:

¢ sync_capable is a boolean indicating if the middleware can handle synchronous requests. Defaults to

True.

* async_capable is a boolean indicating if the middleware can handle asynchronous requests. Defaults

to False.

If your middleware has both sync_capable = True and async_capable = True, then Django will pass it
the request without converting it. In this case, you can work out if your middleware will receive async
requests by checking if the get_response object you are passed is a coroutine function, using asgiref.

sync.iscoroutinefunction.

The django.utils.decorators module contains sync_only_middleware(), async_only_middleware (),
and sync_and_async_middleware () decorators that allow you to apply these flags to middleware factory

functions.

The returned callable must match the sync or async nature of the get_response method. If you have an

asynchronous get_response, you must return a coroutine function (async def).

process_view, process_template_response and process_exception methods, if they are provided, should
also be adapted to match the sync/async mode. However, Django will individually adapt them as required if

you do not, at an additional performance penalty.

Here’s an example of how to create a middleware function that supports both:

300 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

from asgiref.sync import iscoroutinefunction

from django.utils.decorators import sync_and_async_middleware

Osync_and_async_middleware

def simple_middleware(get_response):

if iscoroutinefunction(get_response):

async def middleware(request):

response = await get_response(request)

return re sponse

else:

def middleware(request):

response = get_response(request)

return response

return middleware

O Note

If you declare a hybrid middleware that supports both synchronous and asynchronous calls, the kind of
call you get may not match the underlying view. Django will optimize the middleware call stack to have

as few sync/async transitions as possible.

Thus, even if you are wrapping an async view, you may be called in sync mode if there is other, syn-

chronous middleware between you and the view.

When using an asynchronous class-based middleware, you must ensure that instances are correctly marked

as coroutine functions:

from asgiref.sync import iscoroutinefunction, markcoroutinefunction

class AsyncMiddleware:
async_capable = True

sync_capable = False
(continues on next page)

3.3. Handling HTTP requests 301

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

def __init__(, get_response):
.get_response = get_response
if iscoroutinefunction(.get_response) :

markcoroutinefunction()

async def __call__(, request):

response = await .get_response(request)

return response

Upgrading pre-Django 1.10-style middleware

class django.utils.deprecation.MiddlewareMixin

Django provides django.utils.deprecation.MiddlewareMixin to ease creating middleware classes that
are compatible with both MIDDLEWARE and the old MIDDLEWARE_CLASSES, and support synchronous and asyn-

chronous requests. All middleware classes included with Django are compatible with both settings.

The mixin provides an __init__() method that requires a get_response argument and stores it in self.

get_response.
The __call__() method:
1. Calls self.process_request(request) (if defined).
2. Calls self.get_response(request) to get the response from later middleware and the view.
3. Calls self.process_response(request, response) (if defined).
4. Returns the response.

If used with MIDDLEWARE_CLASSES, the __call__() method will never be used; Django calls

process_request () and process_response () directly.

In most cases, inheriting from this mixin will be sufficient to make an old-style middleware compatible with
the new system with sufficient backwards-compatibility. The new short-circuiting semantics will be harmless
or even beneficial to the existing middleware. In a few cases, a middleware class may need some changes to

adjust to the new semantics.
These are the behavioral differences between using ¥IDDLEWARE and MIDDLEWARE_CLASSES:

1. Under MIDDLEWARE_CLASSES, every middleware will always have its process_response method called,
even if an earlier middleware short-circuited by returning a response from its process_request
method. Under MIDDLEWARE, middleware behaves more like an onion: the layers that a response goes
through on the way out are the same layers that saw the request on the way in. If a middleware short-

circuits, only that middleware and the ones before it in MIDDLEWARE will see the response.

302 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

2. Under MIDDLEWARE_CLASSES, process_exception is applied to exceptions raised from a middleware
process_request method. Under MIDDLEWARE, process_exception applies only to exceptions raised
from the view (or from the render method of a TemplateResponse). Exceptions raised from a middle-

ware are converted to the appropriate HT'TP response and then passed to the next middleware.

3. Under MIDDLEWARE_CLASSES, if a process_response method raises an exception, the
process_response methods of all earlier middleware are skipped and a 500 Internal Server
Error HTTP response is always returned (even if the exception raised was e.g. an Http404). Under
MIDDLEWARE, an exception raised from a middleware will immediately be converted to the appropriate
HTTP response, and then the next middleware in line will see that response. Middleware are never

skipped due to a middleware raising an exception.

3.3.8 How to use sessions

Django provides full support for anonymous sessions. The session framework lets you store and retrieve
arbitrary data on a per-site-visitor basis. It stores data on the server side and abstracts the sending and
receiving of cookies. Cookies contain a session ID — not the data itself (unless you're using the cookie based
backend).

Enabling sessions
Sessions are implemented via a piece of middleware.
To enable session functionality, do the following:

o Edit the MIDDLEWARE setting and make sure it contains 'django.contrib.sessions.middleware.
SessionMiddleware'. The default settings.py created by django-admin startproject has

SessionMiddleware activated.

If you don’t want to use sessions, you might as well remove the SessionMiddleware line from MIDDLEWARE

and 'django.contrib.sessions' from your INSTALLED_ APPS. It'll save you a small bit of overhead.

Configuring the session engine

By default, Django stores sessions in your database (using the model django.contrib.sessions.models.
Session). Though this is convenient, in some setups it’s faster to store session data elsewhere, so Django can

be configured to store session data on your filesystem or in your cache.

Using database-backed sessions

If you want to use a database-backed session, you need to add 'django.contrib.sessions' to your
INSTALLED_APPS setting.

Once you have configured your installation, run manage . py migrate to install the single database table that

stores session data.

3.3. Handling HTTP requests 303

Django Documentation, Release 5.2.7.dev20250917080137

Using cached sessions

For better performance, you may want to use a cache-based session backend.

To store session data using Django’s cache system, you’ll first need to make sure you’ve configured your

cache; see the cache documentation for details.

A Warning

You should only use cache-based sessions if you're using the Memcached or Redis cache backend. The
local-memory cache backend doesn’t retain data long enough to be a good choice, and it’ll be faster to
use file or database sessions directly instead of sending everything through the file or database cache

backends. Additionally, the local-memory cache backend is NOT multi-process safe, therefore probably

not a good choice for production environments.

If you have multiple caches defined in CACHES, Django will use the default cache. To use another cache, set
SESSION CACHE ALIAS to the name of that cache.

Once your cache is configured, you have to choose between a database-backed cache or a non-persistent

cache.

The cached database backend (cached_db) uses a write-through cache — session writes are applied to both
the database and cache, in that order. If writing to the cache fails, the exception is handled and logged via

the sessions logger, to avoid failing an otherwise successful write operation.
Handling and logging of exceptions when writing to the cache was added.

Session reads use the cache, or the database if the data has been evicted from the cache. To use this backend,
set, SESSION_ENGINE to "django.contrib.sessions.backends.cached_db", and follow the configuration

instructions for the using database-backed sessions.

The cache backend (cache) stores session data only in your cache. This is faster because it avoids database
persistence, but you will have to consider what happens when cache data is evicted. Eviction can occur if the
cache fills up or the cache server is restarted, and it will mean session data is lost, including logging out users.
To use this backend, set SESSION_ENGINE to "django.contrib.sessions.backends.cache".

The cache backend can be made persistent by using a persistent cache, such as Redis with appropriate config-
uration. But unless your cache is definitely configured for sufficient persistence, opt for the cached database

backend. This avoids edge cases caused by unreliable data storage in production.

Using file-based sessions

To use file-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.backends.file".

You might also want to set the SESSION FILE PATH setting (which defaults to output from tempfile.
gettempdir (), most likely /tmp) to control where Django stores session files. Be sure to check that your

web server has permissions to read and write to this location.

304 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Using cookie-based sessions

To use cookies-based sessions, set the SESSION_ENGINE setting to "django.contrib.sessions.backends.
signed_cookies". The session data will be stored using Django’s tools for cryptographic signing and the
SECRET_KEY setting.

O Note

It’s recommended to leave the SESSTON_COOKIE_HTTPONLY setting on True to prevent access to the stored

data from JavaScript.

A Warning
The session data is signed but not encrypted
When using the cookies backend the session data can be read by the client.

A MAC (Message Authentication Code) is used to protect the data against changes by the client, so that
the session data will be invalidated when being tampered with. The same invalidation happens if the
client storing the cookie (e.g. your user’s browser) can’t store all of the session cookie and drops data.
Even though Django compresses the data, it’s still entirely possible to exceed the common limit of 4096

bytes per cookie.
No freshness guarantee

Note also that while the MAC can guarantee the authenticity of the data (that it was generated by your
site, and not someone else), and the integrity of the data (that it is all there and correct), it cannot guar-
antee freshness i.e. that you are being sent back the last thing you sent to the client. This means that for
some uses of session data, the cookie backend might open you up to replay attacks. Unlike other session
backends which keep a server-side record of each session and invalidate it when a user logs out, cookie-
based sessions are not invalidated when a user logs out. Thus if an attacker steals a user’s cookie, they
can use that cookie to login as that user even if the user logs out. Cookies will only be detected as ‘stale’
if they are older than your SESSION_COOKIE_AGE.

Performance

Finally, the size of a cookie can have an impact on the speed of your site.

Using sessions in views

When SessionMiddleware is activated, each HttpRequest object — the first argument to any Django view

function — will have a session attribute, which is a dictionary-like object.
You can read it and write to request.session at any point in your view. You can edit it multiple times.

class backends.base.SessionBase

3.3. Handling HTTP requests 305

Django Documentation, Release 5.2.7.dev20250917080137

This is the base class for all session objects. It has the following standard dictionary methods:

__getitem__(key)

Example: fav_color = request.session['fav_color']

__setitem__ (key, value)

Example: request.session['fav_color'] = 'blue'

__delitem__(key)

Example: del request.session['fav_color']. This raises KeyError if the given key isn’t al-

ready in the session.

__contains__(key)

Example: 'fav_color' in request.session
get (key, default=None)
aget (key, default=None)
Asynchronous version: aget ()
Example: fav_color = request.session.get('fav_color', 'red')
aget () function was added.

aset (key, value)

Example: await request.session.aset('fav_color', 'red')
update (dict)
aupdate (dict)
Asynchronous version: aupdate ()
Example: request.session.update({'fav_color': 'red'})
aupdate () function was added.
pop (key, default=_not_given)
apop (key, default=__not_given)
Asynchronous version: apop ()
Example: fav_color = request.session.pop('fav_color', 'blue')
apop () function was added.
keys ()
akeys()
Asynchronous version: akeys ()

akeys () function was added.

306

Chapter 3.

Using Django

Django Documentation, Release 5.2.7.dev20250917080137

values ()

avalues()

Asynchronous version: avalues ()
avalues () function was added.
has_key (key)
ahas_key (key)
Asynchronous version: ahas_key ()
ahas_key () function was added.
items ()
aitems ()
Asynchronous version: aitems ()
aitems () function was added.

setdefault ()

asetdefault ()

Asynchronous version: asetdefault ()
asetdefault () function was added.

clear()

It also has these methods:

flush()

aflush()

Asynchronous version: aflush()

Deletes the current session data from the session and deletes the session cookie. This is used if you
want to ensure that the previous session data can’t be accessed again from the user’s browser (for

example, the django. contrib.auth. logout () function calls it).
aflush() function was added.

set_test_cookie()

aset_test_cookie()

Asynchronous version: aset_test_cookie ()

Sets a test cookie to determine whether the user’s browser supports cookies. Due to the way cookies
work, you won’t be able to test this until the user’s next page request. See Setting test cookies below

for more information.

aset_test_cookie() function was added.

3.3. Handling HTTP requests 307

Django Documentation, Release 5.2.7.dev20250917080137

test_cookie_worked()
atest_cookie_worked()
Asynchronous version: atest_cookie_worked()

Returns either True or False, depending on whether the user’s browser accepted the test cookie.
Due to the way cookies work, you’ll have to call set_test_cookie() or aset_test_cookie() on

a previous, separate page request. See Setting test cookies below for more information.
atest_cookie_worked() function was added.
delete_test_cookie()
adelete_test_cookie()
Asynchronous version: adelete_test_cookie()
Deletes the test cookie. Use this to clean up after yourself.
adelete_test_cookie() function was added.

get_session_cookie_age()
Returns the value of the setting SESSION COOKIE_AGE. This can be overridden in a custom session
backend.

set_expiry(value)
aset_expiry(value)
Asynchronous version: aset_expiry ()
Sets the expiration time for the session. You can pass a number of different values:

o If value is an integer, the session will expire after that many seconds of inactivity. For exam-

ple, calling request.session.set_expiry(300) would make the session expire in 5 minutes.
¢ If value is a datetime or timedelta object, the session will expire at that specific date/time.
e If value is 0, the user’s session cookie will expire when the user’s web browser is closed.
o If value is None, the session reverts to using the global session expiry policy.

Reading a session is not considered activity for expiration purposes. Session expiration is com-

puted from the last time the session was modified.
aset_expiry () function was added.
get_expiry_age()
aget_expiry_age()
Asynchronous version: aget_expiry_age()

Returns the number of seconds until this session expires. For sessions with no custom expiration
(or those set to expire at browser close), this will equal SESSION_COOKIE_AGE.

308 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

This function accepts two optional keyword arguments:

e modification: last modification of the session, as a datetime object. Defaults to the current

time.

¢ expiry: expiry information for the session, as a datetime object, an int (in seconds), or None.
Defaults to the value stored in the session by set_ezpiry()/aset_ezpiry (), if there is one,

or None.

O Note

This method is used by session backends to determine the session expiry age in seconds when

saving the session. It is not really intended for usage outside of that context.

In particular, while it is possible to determine the remaining lifetime of a session just when you
have the correct modification value and the expiry is set as a datetime object, where you do

have the modification value, it is more straight-forward to calculate the expiry by-hand:

expires_at = modification + timedelta(seconds=settings.SESSION_COOKIE_AGE)

aget_expiry_age () function was added.
get_expiry_date()
aget_expiry_date()

Asynchronous version: aget_expiry_date()

Returns the date this session will expire. For sessions with no custom expiration (or those set to
expire at browser close), this will equal the date SESSION_ COOKIE_AGE seconds from now.

This function accepts the same keyword arguments as get_ezpiry_age (), and similar notes on
usage apply.
aget_expiry_date() function was added.
get_expire_at_browser_close()
aget_expire_at_browser_close()
Asynchronous version: aget_expire_at_browser_close()

Returns either True or False, depending on whether the user’s session cookie will expire when the

user’s web browser is closed.
aget_expire_at_browser_close() function was added.
clear_expired()

aclear_expired()

Asynchronous version: aclear_expired()

Handling HTTP requests 309

Django Documentation, Release 5.2.7.dev20250917080137

Removes expired sessions from the session store. This class method is called by clearsessions.
aclear_expired() function was added.

cycle_key()

acycle_key()
Asynchronous version: acycle_key()

Creates a new session key while retaining the current session data. django.contrib.auth.

login () calls this method to mitigate against session fixation.

acycle_key() function was added.

Session serialization

By default, Django serializes session data using JSON. You can use the SESSTON_SERIALIZER setting to cus-
tomize the session serialization format. Even with the caveats described in Write your own serializer, we

highly recommend sticking with JSON serialization especially if you are using the cookie backend.

For example, here’s an attack scenario if you use pickle to serialize session data. If you're using the signed
cookie session backend and SECRET_KEY (or any key of SECRET KEY_ FALLBACKS) is known by an attacker
(there isn’t an inherent vulnerability in Django that would cause it to leak), the attacker could insert a string
into their session which, when unpickled, executes arbitrary code on the server. The technique for doing so is
simple and easily available on the internet. Although the cookie session storage signs the cookie-stored data

to prevent tampering, a SECRET KEY leak immediately escalates to a remote code execution vulnerability.

Bundled serializers
class serializers.JSONSerializer
A wrapper around the JSON serializer from django. core. signing. Can only serialize basic data types.

In addition, as JSON supports only string keys, note that using non-string keys in request.session

won’t work as expected:

>>>

>>> request.session[0] = "bar"
>>>

>>>

>>> request.session[0]

>>> request.session["0"]

'bar'

.

Similarly, data that can’t be encoded in JSON, such as non-UTF8 bytes like '\xd9' (which raises

UnicodeDecodeError), can’t be stored.

See the Write your own serializer section for more details on limitations of JSON serialization.

310 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Write your own serializer

Note that the JSONSerializer cannot handle arbitrary Python data types. As is often the case, there is
a trade-off between convenience and security. If you wish to store more advanced data types including
datetime and Decimal in JSON backed sessions, you will need to write a custom serializer (or convert such
values to a JSON serializable object before storing them in request . session). While serializing these values
is often straightforward (DjangoJSONEncoder may be helpful), writing a decoder that can reliably get back
the same thing that you put in is more fragile. For example, you run the risk of returning a datetime that

was actually a string that just happened to be in the same format chosen for datetimes).

Your serializer class must implement two methods, dumps (self, obj) and loads(self, data), to serialize

and deserialize the dictionary of session data, respectively.

Session object guidelines

¢ Use normal Python strings as dictionary keys on request .session. This is more of a convention than

a hard-and-fast rule.
« Session dictionary keys that begin with an underscore are reserved for internal use by Django.

¢ Don’t override request.session with a new object, and don’t access or set its attributes. Use it like a

Python dictionary.

Examples

This simplistic view sets a has_commented variable to True after a user posts a comment. It doesn’t let a user

post a comment more than once:

def post_comment(request, new_comment) :
if request.session.get("has commented", False):
return HttpResponse('You've already commented.")
¢ = comments.Comment (comment=new_comment)
c.save()
request.session["has commented"] = True

return HttpResponse('Thanks for your comment!")

This simplistic view logs in a “member” of the site:

def login(request):
m = Member.objects.get (username=request.POST["username"])
if m.check_password(request.POST["password"]):
request.session["member_id"] = m.id
return HttpResponse('You're logged in.")
else:

return HttpResponse("Your username and password didn't match.")

3.3. Handling HTTP requests 311

Django Documentation, Release 5.2.7.dev20250917080137

...And this one logs a member out, according to login() above:

def logout(request):
try:
del request.session["member_ id"]
except KeyError:
pass

return HttpResponse("You're logged out.")

The standard django. contrib.auth. logout () function actually does a bit more than this to prevent in-
advertent data leakage. It calls the flush() method of request.session. We are using this example as a

demonstration of how to work with session objects, not as a full logout () implementation.

Setting test cookies

As a convenience, Django provides a way to test whether the user’s browser accepts cookies. Call the
set_test_cookie() method of request.sessionina view,andcall test_cookie_worked () in a subsequent

view — not in the same view call.

This awkward split between set_test_cookie() and test_cookie_worked() is necessary due to the way
cookies work. When you set a cookie, you can’t actually tell whether a browser accepted it until the browser’s

next request.

It’s good practice to use delete_test_cookie () to clean up after yourself. Do this after you've verified that

the test cookie worked.

Here’s a typical usage example:

from django.http import HttpResponse

from django.shortcuts import render

def login(request):
if request.method == "POST":
if request.session.test_cookie_worked():
request.session.delete_test_cookie()
return HttpResponse('Vou're logged in.")
else:
return HttpResponse("Please enable cookies and try again.")
request.session.set_test_cookie()

return render(request, "foo/login_form.html")

Support for setting test cookies in asynchronous view functions was added.

312 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Using sessions out of views

O Note

The examples in this section import the SessionStore object directly from the django.contrib.
sessions.backends.db backend. In your own code, you should consider importing SessionStore from
the session engine designated by SESSTON_ENGINE, as below:

>>> from importlib import import_module
>>> from django.conf import settings

>>> SessionStore = import_module(settings.SESSION_ENGINE) .SessionStore

An API is available to manipulate session data outside of a view:

>>> from django.contrib.sessions.backends.db import SessionStore

>>> s = SessionStore()

>>> # stored as seconds since epoch since datetimes are not serializable in JSON.
>>> s["last_login"] = 1376587691

>>> s.create()

>>> s.session_key

'2b1189a188b44ad18c35el13acbeceead’

>>> s = SessionStore(session_key="2b1189a188b44ad18c35el113ac6ceead")

>>> s["last_login"]

1376587691

SessionStore.create() is designed to create a new session (i.e. one not loaded from the session store and
with session_key=None). save() is designed to save an existing session (i.e. one loaded from the session
store). Calling save () on a new session may also work but has a small chance of generating a session_key

that collides with an existing one. create () calls save () and loops until an unused session_key is generated.

If you're using the django.contrib.sessions.backends.db backend, each session is a normal Django
model. The Session model is defined in django/contrib/sessions/models.py. Because it’s a normal model,

you can access sessions using the normal Django database API:

>>> from django.contrib.sessions.models import Session
>>> s = Session.objects.get (pk="2b1189a188b44ad18c35el113ac6ceead")
>>> s.expire_date

datetime.datetime (2005, 8, 20, 13, 35, 12)

Note that you’ll need to call get_decoded() to get the session dictionary. This is necessary because the

dictionary is stored in an encoded format:

3.3. Handling HTTP requests 313

Django Documentation, Release 5.2.7.dev20250917080137

>>> s.session_data
'KGRwMQpTJ19hdXRoX3VzZXJfaWQnCnAyCkkxCnMuMTExY2ZjODI2Yj. . .
>>> s.get_decoded()

{'user_id': 42}

When sessions are saved

By default, Django only saves to the session database when the session has been modified — that is if any of

its dictionary values have been assigned or deleted:

Session ts modified.

request.session["foo"] = "bar"

Sesston ©s modified.

del request.session["foo"]

Sesston ©s modified.

request.session["foo"] = {}

Gotcha: Session is NOT modified, because this alters
request.session['foo'] instead of request.session.

request.session["foo"] ["bar"] = "baz"

In the last case of the above example, we can tell the session object explicitly that it has been modified by

setting the modified attribute on the session object:

request.session.modified = True

To change this default behavior, set the SESSTON_SAVE_EVERY_REQUEST setting to True. When set to True,

Django will save the session to the database on every single request.

Note that the session cookie is only sent when a session has been created or modified. If
SESSION_SAVE_EVERY_REQUEST is True, the session cookie will be sent on every request.

Similarly, the expires part of a session cookie is updated each time the session cookie is sent.

The session is not saved if the response’s status code is 500.

Browser-length sessions vs. persistent sessions

You can control whether the session framework uses browser-length sessions vs. persistent sessions with the
SESSION_EXPIRE_AT BROWSER_CLOSE setting.

By default, SESSTON_EXPIRE_AT BROWSER_CLOSE is set to False, which means session cookies will be stored
in users’ browsers for as long as SESSION_COOKIE_AGE. Use this if you don’t want people to have to log in

314 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

every time they open a browser.

If SESSTON_EXPIRE_AT BROWSER_CLOSE is set to True, Django will use browser-length cookies — cookies that
expire as soon as the user closes their browser. Use this if you want people to have to log in every time they

open a browser.

This setting is a global default and can be overwritten at a per-session level by explicitly calling the

set_ezpiry () method of request.session as described above in using sessions in views.

O Note

Some browsers (Chrome, for example) provide settings that allow users to continue browsing
sessions after closing and reopening the browser. In some cases, this can interfere with the
SESSION_EXPIRE_AT BROWSER_CLOSE setting and prevent sessions from expiring on browser close. Please
be aware of this while testing Django applications which have the SESSTON_EXPIRE AT BROWSER_CLOSE

setting enabled.

Clearing the session store

As users create new sessions on your website, session data can accumulate in your session store. If you're
using the database backend, the django_session database table will grow. If you're using the file backend,

your temporary directory will contain an increasing number of files.

To understand this problem, consider what happens with the database backend. When a user logs in, Django
adds a row to the django_session database table. Django updates this row each time the session data
changes. If the user logs out manually, Django deletes the row. But if the user does not log out, the row

never gets deleted. A similar process happens with the file backend.

Django does not provide automatic purging of expired sessions. Therefore, it’s your job to purge ex-
pired sessions on a regular basis. Django provides a clean-up management command for this purpose:
clearsessions. It’s recommended to call this command on a regular basis, for example as a daily cron

job.

Note that the cache backend isn’t vulnerable to this problem, because caches automatically delete stale data.

Neither is the cookie backend, because the session data is stored by the users’ browsers.

Settings
A few Django settings give you control over session behavior:
e SESSION CACHE ALIAS
e SESSION_COOUKIE_AGE
e SESSION COOKIE DOMAIN
e SESSION_ COOKIE HTTPONLY

e SESSION_COOUKIE_NAME

3.3. Handling HTTP requests 315

Django Documentation, Release 5.2.7.dev20250917080137

o SESSION_COOKIE PATH
e SESSION COOKIE SAMESITE

o SESSION_ COOKIE_SECURE

o SESSION_ENGINE

o SESSION EXPIRE AT BROWSER_CLOSE
o SESSION FILE_PATH

o SESSION_ SAVE_EVERY REQUEST

SESSION_SERIALIZER

Session security

Subdomains within a site are able to set cookies on the client for the whole domain. This makes session

fixation possible if cookies are permitted from subdomains not controlled by trusted users.

For example, an attacker could log into good.example. com and get a valid session for their account. If the
attacker has control over bad . example . com, they can use it to send their session key to you since a subdomain
is permitted to set cookies on *.example.com. When you visit good. example.com, you'll be logged in as the
attacker and might inadvertently enter your sensitive personal data (e.g. credit card info) into the attacker’s

account.

Another possible attack would be if good.example.com sets its SESSION_ COOKIE_DOMAIN to "example.com"

which would cause session cookies from that site to be sent to bad.example. com.

Technical details
o The session dictionary accepts any json serializable value when using JSONSerializer.
¢ Session data is stored in a database table named django_session.

¢ Django only sends a cookie if it needs to. If you don’t set any session data, it won’t send a session cookie.

The SessionStore object

When working with sessions internally, Django uses a session store object from the corresponding session
engine. By convention, the session store object class is named SessionStore and is located in the module
designated by SESSION_ENGINE.

All SessionStore subclasses available in Django implement the following data manipulation methods:
e exists()
e create()
e save()

o delete()

316 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

e 1load()
e clear_ezpired()

An asynchronous interface for these methods is provided by wrapping them with sync_to_async(). They

can be implemented directly if an async-native implementation is available:
e aexists()
e acreate()
e asave()
e adelete()
e aload()
e aclear_ezxpired()

In order to build a custom session engine or to customize an existing one, you may create a new class inheriting

from SessionBase or any other existing SessionStore class.

You can extend the session engines, but doing so with database-backed session engines generally requires

some extra effort (see the next section for details).

aexists(), acreate(), asave(), adelete(), aload(), and aclear_expired () methods were added.

Extending database-backed session engines

Creating a custom database-backed session engine built upon those included in Django (namely db and

cached_db) may be done by inheriting AbstractBaseSession and either SessionStore class.

AbstractBaseSession and BaseSessionManager are importable from django.contrib.sessions.
base_session so that they can be imported without including django.contrib.sessions in
INSTALLED_APPS.

class base_session.AbstractBaseSession

The abstract base session model.

session_key
Primary key. The field itself may contain up to 40 characters. The current implementation gen-
erates a 32-character string (a random sequence of digits and lowercase ASCII letters).
session_data

A string containing an encoded and serialized session dictionary.

expire_date

A datetime designating when the session expires.

Expired sessions are not available to a user, however, they may still be stored in the database until

the clearsessions management command is run.

3.3. Handling HTTP requests 317

Django Documentation, Release 5.2.7.dev20250917080137

classmethod get_session_store_class()

Returns a session store class to be used with this session model.

get_decoded ()

Returns decoded session data.
Decoding is performed by the session store class.
You can also customize the model manager by subclassing BaseSessionManager:
class base_session.BaseSessionManager
encode (session_dict)
Returns the given session dictionary serialized and encoded as a string.
Encoding is performed by the session store class tied to a model class.

save (session_key, session_dict, expire_date)

Saves session data for a provided session key, or deletes the session in case the data is empty.
Customization of SessionStore classes is achieved by overriding methods and properties described below:

class backends.db.SessionStore

Implements database-backed session store.

classmethod get_model_class()

Override this method to return a custom session model if you need one.

create_model_instance(data)

Returns a new instance of the session model object, which represents the current session state.

Overriding this method provides the ability to modify session model data before it’s saved to

database.

class backends.cached_db.SessionStore

Implements cached database-backed session store.

cache_key_prefix

A prefix added to a session key to build a cache key string,.

Example

The example below shows a custom database-backed session engine that includes an additional database
column to store an account ID (thus providing an option to query the database for all active sessions for an

account):

from django.contrib.sessions.backends.db import SessionStore as DBStore

from django.contrib.sessions.base_session import AbstractBaseSession

(continues on next page)

318 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

from django.db import models

class CustomSession(AbstractBaseSession):

account_id = models.IntegerField(null=True, db_index=True)

@classmethod
def get_session_store_class(K

return SessionStore

class SessionStore(DBStore):
@classmethod
def get_model_class()

return CustomSession

def create_model_instance(, data):
obj = () .create_model_instance(data)
try:
account_id = (data.get (" _auth_user_id"))

except (ValueError, TypeError):
account_id = None
obj.account_id = account_id

return obj

If you are migrating from the Django’s built-in cached_db session store to a custom one based on cached_db,

you should override the cache key prefix in order to prevent a namespace clash:

class SessionStore(CachedDBStore) :

cache_key_prefix = "mysessions.custom_cached_db_backend"

Session IDs in URLs

The Django sessions framework is entirely, and solely, cookie-based. It does not fall back to putting session
IDs in URLs as a last resort, as PHP does. This is an intentional design decision. Not only does that behavior

make URLs ugly, it makes your site vulnerable to session-ID theft via the “Referer” header.

3.3. Handling HTTP requests 319

Django Documentation, Release 5.2.7.dev20250917080137

3.4 Working with forms

©® About this document

This document provides an introduction to the basics of web forms and how they are handled in Django.
For a more detailed look at specific areas of the forms API, see The Forms API, Form fields, and Form
and field validation.

Unless you're planning to build websites and applications that do nothing but publish content, and don’t

accept input from your visitors, you're going to need to understand and use forms.

Django provides a range of tools and libraries to help you build forms to accept input from site visitors, and

then process and respond to the input.

3.4.1 HTML forms

In HTML, a form is a collection of elements inside <form>. . .</form> that allow a visitor to do things like
enter text, select options, manipulate objects or controls, and so on, and then send that information back to

the server.

Some of these form interface elements - text input or checkboxes - are built into HTML itself. Others are much
more complex; an interface that pops up a date picker or allows you to move a slider or manipulate controls

will typically use JavaScript and CSS as well as HTML form <input> elements to achieve these effects.
As well as its <input> elements, a form must specify two things:

e where: the URL to which the data corresponding to the user’s input should be returned

¢ how: the HTTP method the data should be returned by

As an example, the login form for the Django admin contains several <input> elements: one of type="text"
for the username, one of type="password" for the password, and one of type="submit" for the “Log in”
button. It also contains some hidden text fields that the user doesn’t see, which Django uses to determine

what to do next.

Tt also tells the browser that the form data should be sent to the URL specified in the <form>’s action attribute
- /admin/ - and that it should be sent using the HTTP mechanism specified by the method attribute - post.

When the <input type="submit" value="Log in"> element is triggered, the data is returned to /admin/.

GET and POST
GET and POST are the only HTTP methods to use when dealing with forms.

Django’s login form is returned using the POST method, in which the browser bundles up the form data,

encodes it for transmission, sends it to the server, and then receives back its response.

320 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

GET, by contrast, bundles the submitted data into a string, and uses this to compose a URL. The URL contains
the address where the data must be sent, as well as the data keys and values. You can see this in action
if you do a search in the Django documentation, which will produce a URL of the form https://docs.

djangoproject.com/search/7q=forms&release=1.
GET and POST are typically used for different purposes.

Any request that could be used to change the state of the system - for example, a request that makes changes
in the database - should use POST. GET should be used only for requests that do not affect the state of the

system.

GET would also be unsuitable for a password form, because the password would appear in the URL, and thus,
also in browser history and server logs, all in plain text. Neither would it be suitable for large quantities of
data, or for binary data, such as an image. A web application that uses GET requests for admin forms is a
security risk: it can be easy for an attacker to mimic a form’s request to gain access to sensitive parts of the

system. POST, coupled with other protections like Django’s CSRF protection offers more control over access.

On the other hand, GET is suitable for things like a web search form, because the URLSs that represent a GET

request can easily be bookmarked, shared, or resubmitted.

3.4.2 Django’s role in forms

Handling forms is a complex business. Consider Django’s admin, where numerous items of data of several
different types may need to be prepared for display in a form, rendered as HTML, edited using a convenient

interface, returned to the server, validated and cleaned up, and then saved or passed on for further processing.

Django’s form functionality can simplify and automate vast portions of this work, and can also do it more

securely than most programmers would be able to do in code they wrote themselves.
Django handles three distinct parts of the work involved in forms:

¢ preparing and restructuring data to make it ready for rendering

e creating HTML forms for the data

e receiving and processing submitted forms and data from the client

It is possible to write code that does all of this manually, but Django can take care of it all for you.

3.4.3 Forms in Django
We've described HTML forms briefly, but an HTML <form> is just one part of the machinery required.

In the context of a web application, ‘form’ might refer to that HTML <form>, or to the Django Form that
produces it, or to the structured data returned when it is submitted, or to the end-to-end working collection

of these parts.

3.4. Working with forms 321

Django Documentation, Release 5.2.7.dev20250917080137

The Django Form class

At the heart of this system of components is Django’s Form class. In much the same way that a Django model
describes the logical structure of an object, its behavior, and the way its parts are represented to us, a Form

class describes a form and determines how it works and appears.

In a similar way that a model class’s fields map to database fields, a form class’s fields map to HTML form
<input> elements. (A ModelForm maps a model class’s fields to HTML form <input> elements via a Form;

this is what the Django admin is based upon.)

A form’s fields are themselves classes; they manage form data and perform validation when a form is sub-
mitted. A DateField and a FileField handle very different kinds of data and have to do different things
with it.

A form field is represented to a user in the browser as an HTML “widget” - a piece of user interface machinery.

Each field type has an appropriate default Widget class, but these can be overridden as required.

Instantiating, processing, and rendering forms

When rendering an object in Django, we generally:
1. get hold of it in the view (fetch it from the database, for example)
2. pass it to the template context
3. expand it to HTML markup using template variables

Rendering a form in a template involves nearly the same work as rendering any other kind of object, but

there are some key differences.

In the case of a model instance that contained no data, it would rarely if ever be useful to do anything with
it in a template. On the other hand, it makes perfect sense to render an unpopulated form - that’s what we

do when we want the user to populate it.

So when we handle a model instance in a view, we typically retrieve it from the database. When we’re dealing

with a form we typically instantiate it in the view.

When we instantiate a form, we can opt to leave it empty or prepopulate it, for example with:
¢ data from a saved model instance (as in the case of admin forms for editing)
o data that we have collated from other sources
e data received from a previous HTML form submission

The last of these cases is the most interesting, because it’s what makes it possible for users not just to read a

website, but to send information back to it too.

322 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

3.4.4 Building a form

The work that needs to be done

Suppose you want to create a simple form on your website, in order to obtain the user’s name. You’d need

something like this in your template:

<form action="/your-name/" method="post">
<label for="your name'>Your name: </label>
<input id="your_name" type='"text" name="your_name" value=" current_name ">
<input type="submit" value="0OK">

</form>

This tells the browser to return the form data to the URL /your-name/, using the POST method. It will
display a text field, labeled “Your name:”, and a button marked “OK”. If the template context contains a

current_name variable, that will be used to pre-fill the your_name field.

You'll need a view that renders the template containing the HTML form, and that can supply the

current_name field as appropriate.
When the form is submitted, the POST request which is sent to the server will contain the form data.

Now you’ll also need a view corresponding to that /your-name/ URL which will find the appropriate

key/value pairs in the request, and then process them.

This is a very simple form. In practice, a form might contain dozens or hundreds of fields, many of which
might need to be prepopulated, and we might expect the user to work through the edit-submit cycle several

times before concluding the operation.

We might require some validation to occur in the browser, even before the form is submitted; we might want

to use much more complex fields, that allow the user to do things like pick dates from a calendar and so on.

At this point it’s much easier to get Django to do most of this work for us.

Building a form in Django

The Form class

We already know what we want our HTML form to look like. Our starting point for it in Django is this:

Listing 10: forms.py

from django import forms

class NameForm(forms.Form) :

your_name = forms.CharField(label="Your name", max_length=100)

3.4. Working with forms 323

Django Documentation, Release 5.2.7.dev20250917080137

This defines a Form class with a single field (your_name). We’ve applied a human-friendly label to the field,
which will appear in the <label> when it’s rendered (although in this case, the label we specified is actually

the same one that would be generated automatically if we had omitted it).

The field’s maximum allowable length is defined by maz_length. This does two things. It puts a
maxlength="100" on the HTML <input> (so the browser should prevent the user from entering more than
that number of characters in the first place). It also means that when Django receives the form back from
the browser, it will validate the length of the data.

A Form instance has an is_valid() method, which runs validation routines for all its fields. When this

method is called, if all fields contain valid data, it will:
e return True
e place the form’s data in its cleaned_data attribute.

The whole form, when rendered for the first time, will look like:

<label for="your name'>Your name: </label>

<input id="your_name" type="text" name="your_name" maxlength="100" required>

Note that it does not include the <form> tags, or a submit button. We’ll have to provide those ourselves in

the template.

The view

Form data sent back to a Django website is processed by a view, generally the same view which published

the form. This allows us to reuse some of the same logic.

To handle the form we need to instantiate it in the view for the URL where we want it to be published:

Listing 11: views.py

from django.http import HttpResponseRedirect

from django.shortcuts import render

from .forms import NameForm

def get_name(request):

if request.method == "POST":

form = NameForm(request.POST)

if form.is_valid():

(continues on next page)

324 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

return HttpResponseRedirect("/thanks/")

else:

form = NameForm()

return render(request, "name.html", {"form": form})

If we arrive at this view with a GET request, it will create an empty form instance and place it in the template

context to be rendered. This is what we can expect to happen the first time we visit the URL.

If the form is submitted using a POST request, the view will once again create a form instance and populate
it with data from the request: form = NameForm(request.POST) This is called “binding data to the form”

(it is now a bound form).

We call the form’s is_valid() method; if it’s not True, we go back to the template with the form. This
time the form is no longer empty (unbound) so the HTML form will be populated with the data previously

submitted, where it can be edited and corrected as required.

If is_valid() is True, we’ll now be able to find all the validated form data in its cleaned_data attribute.
We can use this data to update the database or do other processing before sending an HTTP redirect to the

browser telling it where to go next.

The template

We don’t need to do much in our name . html template:

<form action="/your-name/" method="post">
csrf_token
form
<input type="submit" value="Submit">

</form>

All the form’s fields and their attributes will be unpacked into HTML markup from that {{ form }} by

Django’s template language.

© Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request Forgeries. When submitting a

form via POST with CSRF protection enabled you must use the csrf_token template tag as in the preced-

3.4. Working with forms 325

Django Documentation, Release 5.2.7.dev20250917080137

ing example. However, since CSRF protection is not directly tied to forms in templates, this tag is omitted

from the following examples in this document.

© HTMLS5 input types and browser validation

If your form includes a URLField, an EmailField or any integer field type, Django will use the url,
email and number HTML5 input types. By default, browsers may apply their own validation on these
fields, which may be stricter than Django’s validation. If you would like to disable this behavior, set the

novalidate attribute on the form tag, or specify a different widget on the field, like Tezt Input.

We now have a working web form, described by a Django Form, processed by a view, and rendered as an
HTML <form>.

That’s all you need to get started, but the forms framework puts a lot more at your fingertips. Once you
understand the basics of the process described above, you should be prepared to understand other features

of the forms system and ready to learn a bit more about the underlying machinery.

3.4.5 More about Django Form classes

All form classes are created as subclasses of either django. forms.Formor django. forms.ModelForm. You
can think of ModelForm as a subclass of Form. Form and ModelForm actually inherit common functionality

from a (private) BaseForm class, but this implementation detail is rarely important.

©® Models and Forms

In fact if your form is going to be used to directly add or edit a Django model, a ModelForm can save you
a great deal of time, effort, and code, because it will build a form, along with the appropriate fields and

their attributes, from a Model class.

Bound and unbound form instances
The distinction between Bound and unbound forms is important:

¢ An unbound form has no data associated with it. When rendered to the user, it will be empty or will

contain default values.

¢ A bound form has submitted data, and hence can be used to tell if that data is valid. If an invalid bound

form is rendered, it can include inline error messages telling the user what data to correct.

The form’s is_bound attribute will tell you whether a form has data bound to it or not.

326 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

More on fields

Consider a more useful form than our minimal example above, which we could use to implement “contact

me” functionality on a personal website:

Listing 12: forms.py

from django import forms

class ContactForm(forms.Form) :
forms.CharField(max_length=100)

subject
message = forms.CharField(widget=forms.Textarea)
sender = forms.EmailField()

cc_myself = forms.BooleanField(required=False)

Our earlier form used a single field, your_name, a CharField. In this case, our form has four fields: subject,
message, sender and cc_myself. CharField, EmailField and BooleanField are just three of the available

field types; a full list can be found in Form fields.

Widgets
Each form field has a corresponding Widget class, which in turn corresponds to an HTML form widget such
as <input type="text">.

In most cases, the field will have a sensible default widget. For example, by default, a CharField will have a
TeztInput widget, that produces an <input type="text">in the HTML. If you needed <textarea> instead,
you’d specify the appropriate widget when defining your form field, as we have done for the message field.

Field data

Whatever the data submitted with a form, once it has been successfully validated by calling is_valid()
(and is_valid () hasreturned True), the validated form data will be in the form.cleaned_data dictionary.

This data will have been nicely converted into Python types for you.

O Note

You can still access the unvalidated data directly from request . POST at this point, but the validated data

is better.

In the contact form example above, cc_myself will be a boolean value. Likewise, fields such as IntegerField

and FloatField convert values to a Python int and float respectively.

Here’s how the form data could be processed in the view that handles this form:

3.4. Working with forms 327

Django Documentation, Release 5.2.7.dev20250917080137

Listing 13: views.py

from django.core.mail import send_mail

if form.is_valid():

subject = form.cleaned_datal["subject"]

message = form.cleaned_data['message"]

sender = form.cleaned_datal["sender"]

cc_myself = form.cleaned_datal["cc_myself"]

recipients = ["info@example.com"]
if cc_myself:

recipients.append(sender)

send_mail(subject, message, sender, recipients)

return HttpResponseRedirect("/thanks/")

© Tip

For more on sending email from Django, see Sending email.

Some field types need some extra handling. For example, files that are uploaded using a form need to be
handled differently (they can be retrieved from request.FILES, rather than request.POST). For details of
how to handle file uploads with your form, see Binding uploaded files to a form.

3.4.6 Working with form templates

All you need to do to get your form into a template is to place the form instance into the template context.
So if your form is called form in the context, {{ form }} will render its <label> and <input> elements

appropriately.

© Additional form template furniture

Don’t forget that a form’s output does not include the surrounding <form> tags, or the form’s submit

control. You will have to provide these yourself.

328 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Reusable form templates

The HTML output when rendering a form is itself generated via a template. You can control this by creating
an appropriate template file and setting a custom FORM_RENDERER to use that form_template_name site-wide.
You can also customize per-form by overriding the form’s template_name attribute to render the form using

the custom template, or by passing the template name directly to Form. render ().

The example below will result in {{ form }} being rendered as the output of the form_snippet.html tem-

plate.

In your templates:

In your template:

form

In form_snippet.html:
for field in form
<div class="fieldWrapper">
field.errors
field.label_tag field
</div>

endfor

Then you can configure the FORM_RENDERER setting;:

Listing 14: settings.py

from django.forms.renderers import TemplatesSetting

class CustomFormRenderer(TemplatesSetting) :

form_template_name = "form_ snippet.html"

FORM_RENDERER = "project.settings.CustomFormRenderer"

... or for a single form:

class MyForm(forms.Form) :

template_name = "form_snippet.html"

... or for a single render of a form instance, passing in the template name to the Form. render (). Here’s an

example of this being used in a view:

3.4. Working with forms 329

Django Documentation, Release 5.2.7.dev20250917080137

def index(request):
form = MyForm()
rendered_form = form.render ("form_ snippet.html")
context = {"form": rendered_form}

return render(request, "index.html", context)

See Outputting forms as HTML for more details.

Reusable field group templates

Each field is available as an attribute of the form, using {{ form.name_of_field }}in a template. A field
hasa as_field_group () method which renders the related elements of the field as a group, its label, widget,

errors, and help text.

This allows generic templates to be written that arrange fields elements in the required layout. For example:

{{ form.non field errors }}
<div class="fieldWrapper">

{{ form.subject.as_field_group }}
</div>
<div class="fieldWrapper">

{{ form.message.as_field_group }}
</div>
<div class="fieldWrapper">

{{ form.sender.as_field_group }}
</div>
<div class="fieldWrapper">

{{ form.cc_myself.as_field_group }}

</div>

By default Django uses the "django/forms/field.html" template which is designed for use with the default
"django/forms/div.html" form style.

The default template can be customized by setting field_template_name in your project-level
FORM_RENDERER:

from django.forms.renderers import TemplatesSetting

class CustomFormRenderer(TemplatesSetting) :

field_template_name = "field_snippet.html"

... oron a single field:

330 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

class MyForm(forms.Form) :

subject = forms.CharField(template_name='"my custom_ template.html")

... oron a per-request basis by calling BoundField.render () and supplying a template name:

def index(request):
form = ContactForm()
subject = form["subject"]
context = {"subject": subject.render("my_custom_template.html")}

return render(request, "index.html", context)

Rendering fields manually

More fine grained control over field rendering is also possible. Likely this will be in a custom field template,

to allow the template to be written once and reused for each field. However, it can also be directly accessed

from the field attribute on the form. For example:

{{ form.non_field_errors }}

<div class="fieldWrapper">
{{ form.subject.errors }}
<label for="{{ form.subject.id_for_label }}">Email subject:</label>
{{ form.subject }}

</div>

<div class="fieldWrapper">
{{ form.message.errors }}
<label for="{{ form.message.id_for_label }}">Your message:</label>
{{ form.message }}

</div>

<div class="fieldWrapper">
{{ form.sender.errors }}
<label for="{{ form.sender.id for label }}">Your email address:</label>
{{ form.sender }}

</div>

<div class="fieldWrapper">
{{ form.cc_myself.errors }}
<label for="{{ form.cc_myself.id_for_label }}">CC yourself?</label>
{{ form.cc_myself }}

</div>

Complete <label> elements can also be generated using the label_tag (). For example:

3.4. Working with forms

331

Django Documentation, Release 5.2.7.dev20250917080137

<div class="fieldWrapper">
form.subject.errors
form.subject.label_tag
form.subject

</div>

Rendering form error messages

The price of this flexibility is a bit more work. Until now we haven’t had to worry about how to display form
errors, because that’s taken care of for us. In this example we have had to make sure we take care of any
errors for each field and any errors for the form as a whole. Note {{ form.non_field_errors }} at the top

of the form and the template lookup for errors on each field.

Using {{ form.name_of_field.errors 1}} displays a list of form errors, rendered as an unordered list. This
might look like:

<ul class="errorlist">
Sender is required.</1li>

The list has a CSS class of errorlist to allow you to style its appearance. If you wish to further customize

the display of errors you can do so by looping over them:

if form.subject.errors

for error in form.subject.errors
{{ error|escape }}</1li>
endfor

endif

Non-field errors (and/or hidden field errors that are rendered at the top of the form when using helpers like
form.as_p()) will be rendered with an additional class of nonfield to help distinguish them from field-

specific errors. For example, {{ form.non_field_errors }} would look like:

<ul class="errorlist nonfield">
<1li>Generic validation error

See The Forms API for more on errors, styling, and working with form attributes in templates.

332 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Looping over the form’s fields

If you’re using the same HTML for each of your form fields, you can reduce duplicate code by looping through

each field in turn using a {% for %3} loop:

for field in form
<div class="fieldWrapper">
field.errors
field.label_tag field
if field.help_text

<p class="help" id=" field.auto_id +}_helptext">
field.help_text|safe
</p>
endif
</div>

endfor

Useful attributes on {{ field }} include:

{{

{{

{{

{{

a8

{{

field.errors }}
Outputs a <ul class="errorlist"> containing any validation errors corresponding to this field. You
can customize the presentation of the errors with a {% for error in field.errors %} loop. In this

case, each object in the loop is a string containing the error message.

field.field }}
The Field instance from the form class that this BoundField wraps. You can use it to access Field
attributes, e.g. {{ char_field.field.max_length }}

field.help_text }}
Any help text that has been associated with the field.

field.html_name }}
The name of the field that will be used in the input element’s name field. This takes the form prefix

into account, if it has been set.

field.id_for_label }}
The ID that will be used for this field (id_email in the example above). If you are constructing the
label manually, you may want to use this in lieu of label_tag. It’s also useful, for example, if you

have some inline JavaScript and want to avoid hardcoding the field’s ID.

field.is_hidden }}
This attribute is True if the form field is a hidden field and False otherwise. It’s not particularly useful

as a template variable, but could be useful in conditional tests such as:

if field.is_hidden

(continues on next page)

3.4. Working with forms 333

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

endif

{{ field.label }}
The label of the field, e.g. Email address.

{{ field.label_tag }}
The field’s label wrapped in the appropriate HTML <label> tag. This includes the form’s

label_suffiz. For example, the default 1abel_suffix is a colon:

[<1abel for="id _email">Email address:</label>

{{ field.legend_tag }}
Similar to field.label_tag but uses a <legend> tag in place of <label>, for widgets with multiple

inputs wrapped in a <fieldset>.

{{ field.use_fieldset }}
This attribute is True if the form field’s widget contains multiple inputs that should be semantically

grouped in a <fieldset> with a <legend> to improve accessibility. An example use in a template:

if field.use_fieldset

<fieldset>
if field.label field.legend_tag endif

else
if field.label field.label_tag endif

endif

field

if field.use_fieldset </fieldset> endif

{{ field.value 1}}

The value of the field. e.g someone@example. com.

> See also

For a complete list of attributes and methods, see BoundField.

Looping over hidden and visible fields

If you're manually laying out a form in a template, as opposed to relying on Django’s default form layout, you
might want to treat <input type="hidden"> fields differently from non-hidden fields. For example, because
hidden fields don’t display anything, putting error messages “next to” the field could cause confusion for your

users — so errors for those fields should be handled differently.

Django provides two methods on a form that allow you to loop over the hidden and visible fields indepen-

334 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

dently: hidden_fields() and visible_fields(). Here’s a modification of an earlier example that uses

these two methods:

for hidden in form.hidden_fields
hidden

endfor

for field in form.visible_fields
<div class="fieldWrapper">
field.errors
field.label_tag field
</div>

endfor

This example does not handle any errors in the hidden fields. Usually, an error in a hidden field is a sign
of form tampering, since normal form interaction won’t alter them. However, you could easily insert some

error displays for those form errors, as well.

3.4.7 Further topics

This covers the basics, but forms can do a whole lot more:

Formsets

class BaseFormSet

A formset is a layer of abstraction to work with multiple forms on the same page. It can be best compared

to a data grid. Let’s say you have the following form:

>>> from django import forms

>>> class ArticleForm(forms.Form) :
title = forms.CharField()
pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm

you would do:

>>> from django.forms import formset_factory

>>> ArticleFormSet = formset_factory(ArticleForm)

Younow have created a formset classnamed ArticleFormSet. Instantiating the formset gives you the ability

to iterate over the forms in the formset and display them as you would with a regular form:

3.4. Working with forms 335

Django Documentation, Release 5.2.7.dev20250917080137

>>> formset = ArticleFormSet ()
>>> for form in formset:

print (form)

<div><label for="id_form-0O-title">Title:</label><input type="text" name="form-0O-title"
—id="id_form-0-title"></div>
<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-

—pub_date" id="id_form-O-pub_date"></div>

As you can see it only displayed one empty form. The number of empty forms that is displayed is controlled
by the extra parameter. By default, formset_ factory () defines one extra form; the following example will

create a formset class to display two blank forms:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)

Formsets can be iterated and indexed, accessing forms in the order they were created. You can reorder the

forms by overriding the default iteration and indexing behavior if needed.

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of
extra forms. What this means is that you are telling the formset how many additional forms to show in

addition to the number of forms it generates from the initial data. Let’s take a look at an example:

>>> import datetime
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)
>>> formset = ArticleFormSet (
initial=[
{
"title": "Django is now open source",

"pub_date": datetime.date.today(),

>>> for form in formset:

print (form)

<div><label for="id_form-0-title">Title:</label><input type="text" name="form-0O-title"

—value="Django is now open source" id="id_form-O-title"></div>
(continues on next page)

336 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-
—pub_date" value="2023-02-11" id="id_form-O-pub_date"></div>
<div><label for="id_form-1-title">Title:</label><input type="text" name="form-1-title",
—id="id_form-1-title"></div>
<div><label for="id_form-1-pub_date">Pub date:</label><input type="text" name="form-1-
—pub_date" id="id_form-1-pub_date"></div>
<div><label for="id_form-2-title">Title:</label><input type="text" name="form-2-title"
—id="id_form-2-title"></div>
<div><label for="id_form-2-pub_date">Pub date:</label><input type="text" name="form-2-
—pub_date" id="id_form-2-pub_date"></div>

There are now a total of three forms showing above. One for the initial data that was passed in and two

extra forms. Also note that we are passing in a list of dictionaries as the initial data.

If you use an initial for displaying a formset, you should pass the same initial when processing that
formset’s submission so that the formset can detect which forms were changed by the user. For example,

you might have something like: ArticleFormSet (request.POST, initial=[...]).

@ See also

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory () gives you the ability to limit the number of forms the formset

will display:

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2, max_num=1)
>>> formset = ArticleFormSet()

>>> for form in formset:

print (form)

<div><label for="id_form-0-title">Title:</label><input type="text" name="form-O-title"
—id="id_form-0-title"></div>
<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-

—pub_date" id="id_form-O-pub_date"></div>

If the value of max_num is greater than the number of existing items in the initial data, up to extra additional
blank forms will be added to the formset, so long as the total number of forms does not exceed max_num. For

example, if extra=2 and max_num=2 and the formset is initialized with one initial item, a form for the initial

3.4. Working with forms 337

Django Documentation, Release 5.2.7.dev20250917080137

item and one blank form will be displayed.

If the number of items in the initial data exceeds max_num, all initial data forms will be displayed regardless
of the value of max_num and no extra forms will be displayed. For example, if extra=3 and max_num=1 and

the formset is initialized with two initial items, two forms with the initial data will be displayed.

A max_num value of None (the default) puts a high limit on the number of forms displayed (1000). In practice

this is equivalent to no limit.

By default, max_num only affects how many forms are displayed and does not affect validation. If
validate_max=True is passed to the formset_factory(), then max_num will affect validation. See vali-

date max.

Limiting the maximum number of instantiated forms

The absolute_max parameter to formset_factory() allows limiting the number of forms that can be in-
stantiated when supplying POST data. This protects against memory exhaustion attacks using forged POST

requests:

>>> from django.forms.formsets import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, absolute_max=1500)
>>> data = {
"form-TOTAL_FORMS": "1501",
"form-INITIAL_FORMS": "O",

.}
>>> formset = ArticleFormSet(data)
>>> (formset.forms)
1500

>>> formset.is_valid()
False
>>> formset.non_form_errors()

['Please submit at most 1000 forms.']

When absolute_max is None, it defaults to max_num + 1000. (If max_num is None, it defaults to 2000).
If absolute_max is less than max_num, a ValueError will be raised.
Formset validation

Validation with a formset is almost identical to a regular Form. There is an is_valid method on the formset

to provide a convenient way to validate all forms in the formset:

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

(continues on next page)

338 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

>>> ArticleFormSet = formset_factory(ArticleForm)
>>> data = {

"form-TOTAL_FORMS": "1",

"form-INITIAL_FORMS": "O",

o I

>>> formset = ArticleFormSet(data)
>>> formset.is_valid()

True

We passed in no data to the formset which is resulting in a valid form. The formset is smart enough to ignore

extra forms that were not changed. If we provide an invalid article:

>>> data = {
"form-TOTAL_FORMS": "2",
"form-INITIAL FORMS": "O",
"form-0-title": "Test",
"form-O-pub_date": "1904-06-16",
"form-1-title": "Test",
"form-1-pub_date": "", # <-- this date is missing but required

o b

>>> formset = ArticleFormSet(data)

>>> formset.is_valid()

False

>>> formset.errors

[{}, {'pub_date': ['This field is required.']}]

As we can see, formset . errors is a list whose entries correspond to the forms in the formset. Validation was

performed for each of the two forms, and the expected error message appears for the second item.

Just like when using a normal Form, each field in a formset’s forms may include HTML attributes such as
maxlength for browser validation. However, form fields of formsets won’t include the required attribute as

that validation may be incorrect when adding and deleting forms.

BaseFormSet.total_error_count ()

To check how many errors there are in the formset, we can use the total_error_count method:

>>> # Using the previous exzample

>>> formset.errors

[{}, {'pub_date': ['This field is required.']}]
>>> (formset.errors)

2

(continues on next page)

3.4. Working with forms 339

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> formset.total_error_count ()
1

We can also check if form data differs from the initial data (i.e. the form was sent without any data):

>>> data = {
"form-TOTAL_FORMS": "1",
"form-INITIAL FORMS": "O",
"form-O-title": "",
"form-O-pub_date": "",

o I
>>> formset = ArticleFormSet(data)
>>> formset.has_changed ()

False

Understanding the ManagementForm

You may have noticed the additional data (form-TOTAL_FORMS, form-INITIAL_FORMS) that was required in
the formset’s data above. This data is required for the ManagementForm. This form is used by the formset
to manage the collection of forms contained in the formset. If you don’t provide this management data, the

formset will be invalid:

>>> data = {
"form-0-title": "Test",
"form-O-pub_date": "",
o I
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()

False

It is used to keep track of how many form instances are being displayed. If you are adding new forms via
JavaScript, you should increment the count fields in this form as well. On the other hand, if you are using
JavaScript to allow deletion of existing objects, then you need to ensure the ones being removed are properly
marked for deletion by including form-#-DELETE in the POST data. It is expected that all forms are present
in the POST data regardless.

The management form is available as an attribute of the formset itself. When rendering a formset in a tem-
plate, you can include all the management data by rendering {{ my_formset.management_form }} (substi-

tuting the name of your formset as appropriate).

340 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

O Note

As well as the form-TOTAL_FORMS and form-INITIAL_FORMS fields shown in the examples here, the man-
agement form also includes form-MIN_NUM_FORMS and form-MAX_NUM_FORMS fields. They are output with

the rest of the management form, but only for the convenience of client-side code. These fields are not

required and so are not shown in the example POST data.

total_form_count and initial_form_count

BaseFormSet has a couple of methods that are closely related to the ManagementForm, total_form_count

and initial_form_count.

total_form_count returns the total number of forms in this formset. initial_form_count returns the
number of forms in the formset that were pre-filled, and is also used to determine how many forms are
required. You will probably never need to override either of these methods, so please be sure you understand

what they do before doing so.

empty_form

BaseFormSet provides an additional attribute empty_form which returns a form instance with a prefix of

__prefix__ for easier use in dynamic forms with JavaScript.

error_messages

The error_messages argument lets you override the default messages that the formset will raise. Pass
in a dictionary with keys matching the error messages you want to override. Error message keys in-
clude 'too_few_forms', 'too_many_forms', and 'missing _management_form'. The 'too_few_forms' and
'too_many_forms' error messages may contain % (num)d, which will be replaced with min_num and max_num,

respectively.

For example, here is the default error message when the management form is missing;:

>>> formset = ArticleFormSet ({})

>>> formset.is_valid()

False

>>> formset.non_form_errors()

['ManagementForm data is missing or has been tampered with. Missing fields: form-TOTAL_

—FORMS, form-INITIAL_FORMS. You may need to file a bug report if the issue persists.']

And here is a custom error message:

>>> formset = ArticleFormSet (

{}, error_messages={"missing_management_form": "Sorry, something went wrong."}

(continues on next page)

3.4. Working with forms 341

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> formset.is_valid()
False
>>> formset.non_form_errors()

['Sorry, something went wrong.']

Custom formset validation

A formset has a clean method similar to the one on a Form class. This is where you define your own validation

that works at the formset level:

>>> from django.core.exceptions import ValidationError
>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> class BaseArticleFormSet(BaseFormSet) :
def clean(self):
"""Checks that no two articles have the same title."""
if any(self.errors):
Don't bother validating the formset unless each form ts wvalid on %tsy
< own
return
titles = set()
for form in self.forms:
if self.can_delete and self._should_delete_form(form):
continue
title = form.cleaned_data.get("title")
if title in titles:
raise ValidationError("Articles in a set must have distinct titles.")

titles.add(title)

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> data = {

"form-TOTAL_FORMS": "2",

"form-INITIAL_FORMS": "O",

"form-0-title": "Test",
"form-O-pub_date": "1904-06-16",
"form-1-title": "Test",

"form-1-pub_date": "1912-06-23",

(continues on next page)

342 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
o I
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
{}, {3
>>> formset.non_form_errors()

['Articles in a set must have distinct titles.']

The formset clean method is called after all the Form. clean methods have been called. The errors will be

found using the non_form_errors () method on the formset.

Non-form errors will be rendered with an additional class of nonform to help distinguish them from form-

specific errors. For example, {{ formset.non_form_errors }} would look like:

<ul class="errorlist nonform">
Articles in a set must have distinct titles.</1i>

Validating the number of forms in a formset

Django provides a couple ways to validate the minimum or maximum number of submitted forms. Applica-

tions which need more customizable validation of the number of forms should use custom formset validation.

validate_max

If validate_max=True is passed to formset_factory (), validation will also check that the number of forms

in the data set, minus those marked for deletion, is less than or equal to max_num.

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> ArticleFormSet = formset_factory(ArticleForm, max_num=1, validate_max=True)

>>> data = {
"form-TOTAL_FORMS": "2",
"form-INITIAL FORMS": "O",
"form-0-title": "Test",
"form-O-pub_date": "1904-06-16",
"form-1-title": "Test 2",
"form-1-pub_date": "1912-06-23",

o b
>>> formset = ArticleFormSet(data)

>>> formset.is_valid()
(continues on next page)

3.4. Working with forms 343

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
False
>>> formset.errors
[{}, {3
>>> formset.non_form_errors()

['Please submit at most 1 form.']

validate_max=True validates against max_num strictly even if max_num was exceeded because the amount of

initial data supplied was excessive.

The error message can be customized by passing the 'too_many_forms' message to the error messages ar-

gument.

O Note

Regardless of validate_max, if the number of forms in a data set exceeds absolute_max, then the form
will fail to validate as if validate_max were set, and additionally only the first absolute_max forms will

be validated. The remainder will be truncated entirely. This is to protect against memory exhaustion

attacks using forged POST requests. See Limiting the maximum number of instantiated forms.

validate_min

If validate_min=True is passed to formset_factory (), validation will also check that the number of forms

in the data set, minus those marked for deletion, is greater than or equal to min_num.

>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> ArticleFormSet = formset_factory(ArticleForm, min_num=3, validate_min=True)

>>> data = {
"form-TOTAL_FORMS": "2",
"form-INITIAL_FORMS": "O",
"form-0-title": "Test",
"form-O-pub_date": "1904-06-16",
"form-1-title": "Test 2",
"form-1-pub_date": "1912-06-23",

o &

>>> formset = ArticleFormSet(data)

>>> formset.is_valid()

False

>>> formset.errors

{3, {3

>>> formset.non_form_errors()

(continues on next page)

344 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

['Please submit at least 3 forms.']

The error message can be customized by passing the 'too_few_forms' message to the error messages argu-

ment.

O Note

Regardless of validate_min, if a formset contains no data, then extra + min_num empty forms will be

displayed.

Dealing with ordering and deletion of forms

The formset_factory () provides two optional parameters can_order and can_delete to help with ordering

of forms in formsets and deletion of forms from a formset.

can_order

BaseFormSet.can_order

Default: False

Lets you create a formset with the ability to order:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, can_order=True)
>>> formset = ArticleFormSet(
initial=[
{"title": "Article #1", "pub_date": datetime.date(2008, 5, 10)},
{"title": "Article #2", "pub_date": datetime.date(2008, 5, 11)},

)
>>> for form in formset:

print (form)

<div><label for="id_form-O-title">Title:</label><input type="text" name="form-0-title"
—svalue="Article #1" id="id_form-0-title"></div>

<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-
—pub_date" value="2008-05-10" id="id_form-O-pub_date"></div>

<div><label for="id_form-0-ORDER">0rder:</label><input type="number" name="form-0-ORDER"
—value="1" id="id_form-0-ORDER"></div>

<div><label for="id_form-1-title">Title:</label><input type="text" name="form-1-title"

(continues on next page)

3.4. Working with forms 345

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
—value="Article #2" id="id_form-1-title"></div>
<div><label for="id_form-1-pub_date">Pub date:</label><input type="text" name="form-1-
—pub_date" value="2008-05-11" id="id_form-1-pub_date"></div>
<div><label for="id_form-1-ORDER">0rder:</label><input type="number" name="form-1-ORDER"
—value="2" id="id_form-1-ORDER"></div>
<div><label for="id_form-2-title">Title:</label><input type="text" name="form-2-title"
—id="id_form-2-title"></div>
<div><label for="id_form-2-pub_date">Pub date:</label><input type="text" name="form-2-
—pub_date" id="id_form-2-pub_date"></div>
<div><label for="id_form-2-0RDER">0rder:</label><input type="number" name="form-2-0RDER"
—id="id_form-2-0RDER"></div>

This adds an additional field to each form. This new field is named ORDER and is an forms. IntegerField.
For the forms that came from the initial data it automatically assigned them a numeric value. Let’s look at

what will happen when the user changes these values:

>>> data = {
"form-TOTAL_FORMS": "3",
"form-INITIAL_FORMS": "2",
"form-0-title": "Article #1",
"form-0O-pub_date": "2008-05-10",
"form-0-ORDER": "2",
"form-1-title": "Article #2",
"form-1-pub_date": "2008-05-11",
"form-1-ORDER": "1",
"form-2-title": "Article #3",
"form-2-pub_date": "2008-05-01",
"form-2-ORDER": "0",

>>> formset = ArticleFormSet(
data,
initial=[
{"title": "Article #1", "pub_date": datetime.date(2008, 5, 10)},
{"title": "Article #2", "pub_date": datetime.date(2008, 5, 11)},
1,
)
>>> for form in formset.ordered_forms:

print (form.cleaned_data)

(continues on next page)

346 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
{'title': 'Article #3', 'pub_date': datetime.date(2008, 5, 1), 'ORDER': 0}
{'title': 'Article #2', 'pub_date': datetime.date(2008, 5, 11), 'ORDER': 1}
{'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10), 'ORDER': 2}

BaseFormSet also providesan ordering_widget attributeand get_ordering_widget () method that control

the widget used with can_order.

ordering_widget
BaseFormSet.ordering_widget

Default: NumberInput

Set ordering_widget to specify the widget class to be used with can_order:

>>> from django.forms import BaseFormSet, formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet (BaseFormSet) :

ordering_widget = HiddenInput

>>> ArticleFormSet = formset_factory(

ArticleForm, formset=BaseArticleFormSet, can_order=True

get_ordering_widget
BaseFormSet.get_ordering_widget ()

Override get_ordering_widget () if you need to provide a widget instance for use with can_order:

>>> from django.forms import BaseFormSet, formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet (BaseFormSet) :

def get_ordering widget():

return HiddenInput(attrs={"class": "ordering"})

>>> ArticleFormSet = formset_factory(

ArticleForm, formset=BaseArticleFormSet, can_order=True

3.4. Working with forms 347

Django Documentation, Release 5.2.7.dev20250917080137

can_delete

BaseFormSet.can_delete

Default: False

Lets you create a formset with the ability to select forms for deletion:

>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> ArticleFormSet = formset_factory(ArticleForm, can_delete=True)
>>> formset = ArticleFormSet (
initial=[
{"title": "Article #1", "pub_date": datetime.date(2008, 5, 10)1},
{"title": "Article #2", "pub_date": datetime.date(2008, 5, 11)},

)
>>> for form in formset:

print (form)

<div><label for="id_form-0O-title">Title:</label><input type="text" name="form-O-title"
—value="Article #1" id="id_form-0-title"></div>

<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-
—pub_date" value="2008-05-10" id="id_form-O-pub_date"></div>

<div><label for="id_form-0-DELETE">Delete:</label><input type="checkbox" name="form-0-
—DELETE" id="id_form-O-DELETE"></div>

<div><label for="id_form-1-title">Title:</label><input type="text" name="form-1-title",
—value="Article #2" id="id_form-1-title"></div>

<div><label for="id_form-1-pub_date">Pub date:</label><input type="text" name="form-1-
—pub_date" value="2008-05-11" id="id_form-1-pub_date"></div>

<div><label for="id_form-1-DELETE">Delete:</label><input type="checkbox" name="form-1-
—DELETE" id="id_form-1-DELETE"></div>

<div><label for="id_form-2-title">Title:</label><input type="text" name="form-2-title",
—id="id_form-2-title"></div>

<div><label for="id_form-2-pub_date">Pub date:</label><input type="text" name="form-2-
—pub_date" id="id_form-2-pub_date"></div>

<div><label for="id_form-2-DELETE">Delete:</label><input type="checkbox" name="form-2-
—DELETE" id="id_form-2-DELETE"></div>

Similar to can_order this adds a new field to each form named DELETE and is a forms .BooleanField. When

data comes through marking any of the delete fields you can access them with deleted_forms:

348 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> data = {
"form-TOTAL_FORMS": "3",
"form-INITIAL_FORMS": "2",
"form-O-title": "Article #1",
"form-O-pub_date": "2008-05-10",
"form-O-DELETE": "on",
"form-1-title": "Article #2",
"form-1-pub_date": "2008-05-11",
"form-1-DELETE": "",
"form-2-title": "",
"form-2-pub_date":
"form-2-DELETE": "",

nn
>

>>> formset = ArticleFormSet(
data,
initial=[
{"title": "Article #1", "pub_date": datetime.date(2008, 5, 10)1},
{"title": "Article #2", "pub_date": datetime.date(2008, 5, 11)},
1
)
>>> [form.cleaned_data for form in formset.deleted_forms]

[{'title': 'Article #1', 'pub_date': datetime.date(2008, 5, 10), 'DELETE': Truel}]

If you are using a ModelFormSet, model instances for deleted forms will be deleted when you call formset.

save().

If you call formset.save(commit=False), objects will not be deleted automatically. You’ll need to call

delete() on each of the formset.deleted objects to actually delete them:

>>> instances = formset.save(commit=False)
>>> for obj in formset.deleted_objects:

obj.delete()

On the other hand, if you are using a plain FormSet, it’s up to you to handle formset .deleted_forms, perhaps

in your formset’s save () method, as there’s no general notion of what it means to delete a form.

BaseFormSet also provides a deletion_widget attribute and get_deletion_widget () method that control

the widget used with can_delete.

3.4. Working with forms 349

Django Documentation, Release 5.2.7.dev20250917080137

deletion_widget
BaseFormSet.deletion_widget

Default: CheckbozInput

Set deletion_widget to specify the widget class to be used with can_delete:

>>> from django.forms import BaseFormSet, formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet(BaseFormSet) :

deletion_widget = HiddenInput

>>> ArticleFormSet = formset_factory(

ArticleForm, formset=BaseArticleFormSet, can_delete=True

get_deletion_widget
BaseFormSet.get_deletion_widget ()

Override get_deletion_widget () if you need to provide a widget instance for use with can_delete:

>>> from django.forms import BaseFormSet, formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet(BaseFormSet) :

def get_deletion_widget():

return HiddenInput(attrs={"class": "deletion"})

>>> ArticleFormSet = formset_factory(

ArticleForm, formset=BaseArticleFormSet, can_delete=True

can_delete_extra

BaseFormSet.can_delete_extra

Default: True

While setting can_delete=True, specifying can_delete_extra=False will remove the option to delete extra

forms.

350 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

Adding additional fields to a formset

If you need to add additional fields to the formset this can be easily accomplished. The formset base class
provides an add_fields method. You can override this method to add your own fields or even redefine the
default fields/attributes of the order and deletion fields:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory
>>> from myapp.forms import ArticleForm
>>> class BaseArticleFormSet (BaseFormSet) :
def add_fields(self, form, index):
super() .add_fields(form, index)
form.fields["my_field"] = forms.CharField()

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> formset = ArticleFormSet()
>>> for form in formset:

print (form)

<div><label for="id_form-0-title">Title:</label><input type="text" name="form-0O-title"
—id="id_form-O-title"></div>

<div><label for="id_form-O-pub_date">Pub date:</label><input type="text" name="form-0-
—pub_date" id="id_form-O-pub_date"></div>

<div><label for="id_form-0-my_field">My field:</label><input type="text" name="form-0-my_
—field" id="id_form-O-my_field"></div>

Passing custom parameters to formset forms

Sometimes your form class takes custom parameters, like MyArticleForm. You can pass this parameter when

instantiating the formset:

>>> from django.forms import BaseFormSet
>>> from django.forms import formset_factory

>>> from myapp.forms import ArticleForm

>>> class MyArticleForm(ArticleForm):
def __init__(self, *args, user, *xkwargs):
self.user = user

super().__init__(*args, *xkwargs)

(continues on next page)

3.4. Working with forms 351

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)
>>> ArticleFormSet = formset_factory(MyArticleForm)

>>> formset = ArticleFormSet (form_kwargs={"user": request.user})

The form_kwargs may also depend on the specific form instance. The formset base class provides a
get_form_kwargs method. The method takes a single argument - the index of the form in the formset.

The index is None for the empty form:

>>> from django.forms import BaseFormSet

>>> from django.forms import formset_factory

>>> class BaseArticleFormSet (BaseFormSet) :

def get_form_kwargs(, index):
kwargs = () .get_form_kwargs (index)
kwargs["custom_kwarg"] = index

return kwargs

>>> ArticleFormSet = formset_factory(MyArticleForm, formset=BaseArticleFormSet)

>>> formset = ArticleFormSet ()

Customizing a formset’s prefix

In the rendered HTML, formsets include a prefix on each field’s name. By default, the prefix is 'form', but

it can be customized using the formset’s prefix argument.

For example, in the default case, you might see:

<label for="id_form-0O-title">Title:</label>

<input type="text" name="form-O-title" id="id_form-O-title">

But with ArticleFormset (prefix='article') that becomes:

<label for="id_article-O-title">Title:</label>

<input type="text" name="article-O-title" id="id_article-0O-title">

This is useful if you want to use more than one formset in a view.

Using a formset in views and templates

Formsets have the following attributes and methods associated with rendering:

BaseFormSet.renderer

Specifies the renderer to use for the formset. Defaults to the renderer specified by the FORM_ RENDERER

352 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

setting.

BaseFormSet.template_name
The name of the template rendered if the formset is cast into a string, e.g. via print (formset) orin a

template via {{ formset }}.

By default, a property returning the value of the renderer’s formset_template_name. You may set it

as a string template name in order to override that for a particular formset class.

This template will be used to render the formset’s management form, and then each form in the formset
as per the template defined by the form’s template_name.

BaseFormSet.template_name_div
The name of the template used when calling as_div (). By default this is "django/forms/formsets/
div.html". This template renders the formset’s management form and then each form in the formset
as per the form’s as_div () method.

BaseFormSet.template_name_p
The name of the template used when calling as_p (). By default this is "django/forms/formsets/p.
html". This template renders the formset’s management form and then each form in the formset as
per the form’s as_p () method.

BaseFormSet.template_name_table

The name of the template used when calling as_table (). By default thisis "django/forms/formsets/
table.html". This template renders the formset’s management form and then each form in the formset

as per the form’s as_table () method.

BaseFormSet.template_name_ul

The name of the template used when calling as_u1 (). By default this is "django/forms/formsets/
ul.html". This template renders the formset’s management form and then each form in the formset

as per the form’s as_u1 () method.

BaseFormSet.get_context ()

Returns the context for rendering a formset in a template.
The available context is:
e formset : The instance of the formset.

BaseFormSet . render (template_name=None, context=None, renderer=None)

The render method is called by __str__ as well as the as_div(), as_p (), as_ul (), and as_table()

methods. All arguments are optional and will default to:
e template_name: template_name
e context: Value returned by get_contezt ()

e renderer: Value returned by renderer

3.4. Working with forms 353

Django Documentation, Release 5.2.7.dev20250917080137

BaseFormSet.as_div()

Renders the formset with the template_name_div template.
BaseFormSet.as_p()

Renders the formset with the template_name_p template.
BaseFormSet.as_table()

Renders the formset with the template_name_table template.
BaseFormSet.as_ul()

Renders the formset with the template_name_ul template.

Using a formset inside a view is not very different from using a regular Form class. The only thing you will
want to be aware of is making sure to use the management form inside the template. Let’s look at a sample

view:

from django.forms import formset_factory
from django.shortcuts import render

from myapp.forms import ArticleForm

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
if request.method == "POST":
formset = ArticleFormSet(request.POST, request.FILES)

if formset.is_valid():

pass
else:
formset = ArticleFormSet ()

return render(request, '"manage articles.html", {"formset": formset})

The manage_articles.html template might look like this:

<form method="post'">
formset.management_form
<table>
for form in formset
form
endfor
</table>

</form>

However there’s a slight shortcut for the above by letting the formset itself deal with the management form:

354 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

<form method="post'">
<table>
formset
</table>

</form>

The above ends up calling the BaseFormSet . render () method on the formset class. This renders the formset
using the template specified by the template_name attribute. Similar to forms, by default the formset will be
rendered as_div, with other helper methods of as_p, as_ul, and as_table being available. The rendering of
the formset can be customized by specifying the template_name attribute, or more generally by overriding

the default template.

Manually rendered can_delete and can_order

If you manually render fields in the template, you can render can_delete parameter with {{ form.DELETE

>

<form method="post">
formset.management_form
for form in formset

<1i> form.title </1li>
<1i>{{ form.pub_date }}</1i>
if formset.can_delete
<1i>{{ form.DELETE }}</1i>
endif

endfor

</form>

Similarly, if the formset has the ability to order (can_order=True), it is possible to render it with {{ form.
ORDER }}.

Using more than one formset in a view

You are able to use more than one formset in a view if you like. Formsets borrow much of its behavior from
forms. With that said you are able to use prefix to prefix formset form field names with a given value to
allow more than one formset to be sent to a view without name clashing. Let’s take a look at how this might

be accomplished:

from django.forms import formset_factory

from django.shortcuts import render

(continues on next page)

3.4. Working with forms 355

Django Documentation, Release 5.2.7.dev20250917080137

(continued from previous page)

from myapp.forms import ArticleForm, BookForm

def manage_articles(request):
ArticleFormSet = formset_factory(ArticleForm)
BookFormSet = formset_factory(BookForm)
if request.method ==
article_formset = ArticleFormSet(request.POST, request.FILES, prefix=)
book_formset = BookFormSet(request.POST, request.FILES, prefix=)

if article_formset.is_valid() and book_formset.is_valid():

pass
else:
article_formset = ArticleFormSet (prefix=)
book_formset = BookFormSet (prefix=)

return render (

request,
{
: article_formset,
: book_formset,
},

You would then render the formsets as normal. It is important to point out that you need to pass prefix on

both the POST and non-POST cases so that it is rendered and processed correctly.

Each formset’s prefix replaces the default form prefix that’s added to each field’s name and id HTML at-

tributes.

Creating forms from models

ModelForm
class ModelForm

If you're building a database-driven app, chances are you’ll have forms that map closely to Django models.
For instance, you might have a BlogComment model, and you want to create a form that lets people submit
comments. In this case, it would be redundant to define the field types in your form, because you've already

defined the fields in your model.
For this reason, Django provides a helper class that lets you create a Form class from a Django model.

For example:

356 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

>>> from django.forms import ModelForm

>>> from myapp.models import Article

Create the form class.

>>> class ArticleForm(ModelForm) :

class Meta:

model = Article

fields = ["pub_date", "headline", "content", "reporter"]

Creating a form to add an article.

>>> form = ArticleForm()

Creating a form to change an existing article.
>>> article = Article.objects.get(pk=1)

>>> form = ArticleForm(instance=article)

Field types

The generated Form class will have a form field for every model field specified, in the order specified in the

fields attribute.

Each model field has a corresponding default form field. For example, a CharField on a model is represented

as a CharField on a form. A model ManyToManyField is represented as a MultipleChoiceField. Here is the

full list of conversions:

Model field Form field

AutoField Not represented in the form

BigAutoField Not represented in the form

BigIntegerField IntegerField withmin_value set to -9223372036854775808 and max_value set to 922337:
BinaryField CharField, if editableis set to True on the model field, otherwise not represented in the :
BooleanField BooleanField, or NullBooleanField if null=True

CharField CharField with max_length set to the model field’s max_length and empty_value set to N
DateField DateField

DateTimeFzeld DateTimeFzeld

DecimalField DecimalField

DurationField DurationField

EmailField EmailField

FileFzeld FileField

FilePathField FilePathField

cont

3.4. Working with forms

357

Django Documentation, Release 5.2.7.dev20250917080137

Table 1 — continued from previous page

Model field Form field

FloatField FloatField

ForeignKey ModelChoiceField (see below)
ImageField ImageField

IntegerField IntegerField

IPAddressField IPAddressField
GenerticIPAddressField GenerticIPAddressField

JSONField JSONField

ManyToManyField ModelMultipleChoiceField (see below)
PositiveBigIntegerField IntegerField

PositivelntegerField IntegerField
PositiveSmallIntegerField IntegerField

SlugField SlugField

SmallAutoField Not represented in the form
SmallIntegerField IntegerField

TextField CharField with widget=forms.Textarea
TimeField TimeField

URLField URLField

UUIDField UUIDField

As you might expect, the ForeignKey and ManyToManyField model field types are special cases:

e ForeignKey is represented by django.forms.ModelChoiceField, which is a ChoiceField whose

choices are a model QuerySet.

e ManyToManyField is represented by django.forms.ModelMultipleChoiceField, which is a
MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:

o If the model field has blank=True, then required is set to False on the form field. Otherwise,

required=True.
¢ The form field’s 1abel is set to the verbose_name of the model field, with the first character capitalized.
o The form field’s help_text is set to the help_text of the model field.

o If the model field has choices set, then the form field’s widget will be set to Select, with choices coming
from the model field’s choices. The choices will normally include the blank choice which is selected
by default. If the field is required, this forces the user to make a selection. The blank choice will not be
included if the model field has blank=False and an explicit default value (the default value will be
initially selected instead).

Finally, note that you can override the form field used for a given model field. See Overriding the default
fields below.

358 Chapter 3. Using Django

Django Documentation, Release 5.2.7.dev20250917080137

A full example

Consider this set of models:

from django.db import models

from django.forms imp