This commit is contained in:
ismail 2025-12-15 16:46:48 +03:00
parent 85170c8dfa
commit 3ae6d66dbd
8 changed files with 627 additions and 38 deletions

View File

@ -2591,6 +2591,62 @@ class Document(Base):
return ""
class InterviewQuestion(models.Model):
"""Model to store AI-generated interview questions"""
class QuestionType(models.TextChoices):
TECHNICAL = "technical", _("Technical")
BEHAVIORAL = "behavioral", _("Behavioral")
SITUATIONAL = "situational", _("Situational")
schedule = models.ForeignKey(
'ScheduledInterview',
on_delete=models.CASCADE,
related_name="ai_questions",
verbose_name=_("Interview Schedule")
)
question_text = models.TextField(
verbose_name=_("Question Text")
)
question_type = models.CharField(
max_length=20,
choices=QuestionType.choices,
default=QuestionType.TECHNICAL,
verbose_name=_("Question Type")
)
difficulty_level = models.CharField(
max_length=20,
choices=[
("easy", _("Easy")),
("medium", _("Medium")),
("hard", _("Hard")),
],
default="medium",
verbose_name=_("Difficulty Level")
)
category = models.CharField(
max_length=100,
blank=True,
verbose_name=_("Category")
)
created_at = models.DateTimeField(
auto_now_add=True,
verbose_name=_("Created At")
)
class Meta:
verbose_name = _("Interview Question")
verbose_name_plural = _("Interview Questions")
ordering = ["created_at"]
indexes = [
models.Index(fields=["schedule", "question_type"]),
models.Index(fields=["created_at"]),
]
def __str__(self):
return f"{self.get_question_type_display()} Question for {self.schedule}"
class Settings(Base):
"""Model to store key-value pair settings"""
name = models.CharField(

View File

@ -142,22 +142,14 @@ def create_default_stages(sender, instance, created, **kwargs):
if created:
with transaction.atomic():
# Stage 1: Contact Information
contact_stage = FormStage.objects.create(
resume_upload = FormStage.objects.create(
template=instance,
name="Contact Information",
name="Resume Upload",
order=0,
is_predefined=True,
)
FormField.objects.create(
stage=contact_stage,
label="GPA",
field_type="text",
required=False,
order=1,
is_predefined=True,
)
FormField.objects.create(
stage=contact_stage,
stage=resume_upload,
label="Resume Upload",
field_type="file",
required=True,

View File

@ -1565,16 +1565,152 @@ def send_email_task(
"message": f"Attempted to send email to {len(recipient_emails)} recipients. Service reported processing {processed_count}."
})
# def send_single_email_task(
# recipient_emails,
# subject: str,
# template_name: str,
# context: dict,
# ) -> str:
# """
# Django-Q task to send a bulk email asynchronously.
# """
# from .services.email_service import EmailService
def generate_interview_questions(schedule_id: int) -> dict:
"""
Generate AI-powered interview questions based on job requirements and candidate profile.
Args:
schedule_id (int): The ID of the scheduled interview
Returns:
dict: Result containing status and generated questions or error message
"""
from .models import ScheduledInterview, InterviewQuestion
try:
# Get the scheduled interview with related data
schedule = ScheduledInterview.objects.get(pk=schedule_id)
application = schedule.application
job = schedule.job
logger.info(f"Generating interview questions for schedule {schedule_id}")
# Prepare context for AI
job_description = job.description or ""
job_qualifications = job.qualifications or ""
candidate_resume_text = ""
# Extract candidate resume text if available and parsed
if application.ai_analysis_data:
resume_data_en = application.ai_analysis_data.get('resume_data_en', {})
candidate_resume_text = f"""
Candidate Name: {resume_data_en.get('full_name', 'N/A')}
Current Title: {resume_data_en.get('current_title', 'N/A')}
Summary: {resume_data_en.get('summary', 'N/A')}
Skills: {resume_data_en.get('skills', {})}
Experience: {resume_data_en.get('experience', [])}
Education: {resume_data_en.get('education', [])}
"""
# Create the AI prompt
prompt = f"""
You are an expert technical interviewer and hiring manager. Generate relevant interview questions based on the following information:
JOB INFORMATION:
Job Title: {job.title}
Department: {job.department}
Job Description: {job_description}
Qualifications: {job_qualifications}
CANDIDATE PROFILE:
{candidate_resume_text}
TASK:
Generate 8-10 interview questions that are:
1. Technical questions related to the job requirements
2. Behavioral questions to assess soft skills and cultural fit
3. Situational questions to evaluate problem-solving abilities
4. Questions should be appropriate for the candidate's experience level
For each question, specify:
- Type: "technical", "behavioral", or "situational"
- Difficulty: "easy", "medium", or "hard"
- Category: A brief category name (e.g., "Python Programming", "Team Collaboration", "Problem Solving")
- Question: The actual interview question
OUTPUT FORMAT:
Return a JSON object with the following structure:
{{
"questions": [
{{
"question_text": "The actual question text",
"question_type": "technical|behavioral|situational",
"difficulty_level": "easy|medium|hard",
"category": "Category name"
}}
]
}}
Make questions specific to the job requirements and candidate background. Avoid generic questions.
"""
# Call AI handler
result = ai_handler(prompt)
if result["status"] == "error":
logger.error(f"AI handler returned error for interview questions: {result['data']}")
return {"status": "error", "message": "Failed to generate questions"}
# Parse AI response
data = result["data"]
if isinstance(data, str):
data = json.loads(data)
questions = data.get("questions", [])
if not questions:
return {"status": "error", "message": "No questions generated"}
# Clear existing questions for this schedule
InterviewQuestion.objects.filter(schedule=schedule).delete()
# Save generated questions to database
created_questions = []
for q_data in questions:
question = InterviewQuestion.objects.create(
schedule=schedule,
question_text=q_data.get("question_text", ""),
question_type=q_data.get("question_type", "technical"),
difficulty_level=q_data.get("difficulty_level", "medium"),
category=q_data.get("category", "General")
)
created_questions.append({
"id": question.id,
"text": question.question_text,
"type": question.question_type,
"difficulty": question.difficulty_level,
"category": question.category
})
logger.info(f"Successfully generated {len(created_questions)} questions for schedule {schedule_id}")
return {
"status": "success",
"questions": created_questions,
"message": f"Generated {len(created_questions)} interview questions"
}
except ScheduledInterview.DoesNotExist:
error_msg = f"Scheduled interview with ID {schedule_id} not found"
logger.error(error_msg)
return {"status": "error", "message": error_msg}
except Exception as e:
error_msg = f"Error generating interview questions: {str(e)}"
logger.error(error_msg, exc_info=True)
return {"status": "error", "message": error_msg}
def send_single_email_task(
recipient_emails,
subject: str,
template_name: str,
context: dict,
) -> str:
"""
Django-Q task to send a bulk email asynchronously.
"""
from .services.email_service import EmailService
# if not recipient_emails:
# return json.dumps({"status": "error", "message": "No recipients provided."})
@ -1589,9 +1725,9 @@ def send_email_task(
# context=context,
# )
# # The return value is stored in the result object for monitoring
# return json.dumps({
# "status": "success",
# "count": processed_count,
# "message": f"Attempted to send email to {len(recipient_emails)} recipients. Service reported processing {processed_count}."
# })
# The return value is stored in the result object for monitoring
return json.dumps({
"status": "success",
"count": processed_count,
"message": f"Attempted to send email to {len(recipient_emails)} recipients. Service reported processing {processed_count}."
})

View File

@ -82,6 +82,7 @@ urlpatterns = [
# Interview CRUD Operations
path("interviews/", views.interview_list, name="interview_list"),
path("interviews/<slug:slug>/", views.interview_detail, name="interview_detail"),
path("interviews/<slug:slug>/generate-ai-questions/", views.generate_ai_questions, name="generate_ai_questions"),
path("interviews/<slug:slug>/update_interview_status", views.update_interview_status, name="update_interview_status"),
path("interviews/<slug:slug>/update_interview_result", views.update_interview_result, name="update_interview_result"),

View File

@ -4801,6 +4801,57 @@ def interview_list(request):
return render(request, "interviews/interview_list.html", context)
@login_required
@staff_user_required
def generate_ai_questions(request, slug):
"""Generate AI-powered interview questions for a scheduled interview"""
from django_q.tasks import async_task
from .models import InterviewQuestion
schedule = get_object_or_404(ScheduledInterview, slug=slug)
if request.method == "POST":
# Queue the AI question generation task
task_id = async_task(
"recruitment.tasks.generate_interview_questions",
schedule.id
)
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
return JsonResponse({
"status": "success",
"message": "AI question generation started in background",
"task_id": task_id
})
else:
messages.success(
request,
"AI question generation started. Questions will appear shortly."
)
return redirect("interview_detail", slug=slug)
# For GET requests, return existing questions if any
questions = schedule.ai_questions.all().order_by("created_at")
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
return JsonResponse({
"status": "success",
"questions": [
{
"id": q.id,
"text": q.question_text,
"type": q.question_type,
"difficulty": q.difficulty_level,
"category": q.category,
"created_at": q.created_at.isoformat()
}
for q in questions
]
})
return redirect("interview_detail", slug=slug)
@login_required
@staff_user_required
def interview_detail(request, slug):
@ -4824,9 +4875,9 @@ def interview_detail(request, slug):
reschedule_form = OnsiteScheduleInterviewUpdateForm()
reschedule_form.initial["physical_address"] = interview.physical_address
reschedule_form.initial["room_number"] = interview.room_number
reschedule_form.initial["topic"] = interview.topic
reschedule_form.initial["start_time"] = interview.start_time
reschedule_form.initial["duration"] = interview.duration
reschedule_form.initial["topic"] = interview.topic
reschedule_form.initial["start_time"] = interview.start_time
reschedule_form.initial["duration"] = interview.duration
meeting = interview
interview_email_form = InterviewEmailForm(job, application, schedule)

View File

@ -192,6 +192,126 @@
flex-wrap: wrap;
}
/* AI Questions Styling */
.ai-question-item {
background: linear-gradient(135deg, #f8f9fa 0%, #ffffff 100%);
border: 1px solid var(--kaauh-border);
border-radius: 0.75rem;
padding: 1.25rem;
margin-bottom: 1rem;
position: relative;
transition: all 0.3s ease;
}
.ai-question-item:hover {
box-shadow: 0 6px 16px rgba(0,0,0,0.08);
transform: translateY(-2px);
}
.ai-question-header {
display: flex;
justify-content: space-between;
align-items: flex-start;
margin-bottom: 0.75rem;
}
.ai-question-badges {
display: flex;
gap: 0.5rem;
flex-wrap: wrap;
}
.ai-question-badge {
font-size: 0.75rem;
padding: 0.25rem 0.5rem;
border-radius: 0.25rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.5px;
}
.badge-technical {
background-color: #e3f2fd;
color: #1976d2;
}
.badge-behavioral {
background-color: #f3e5f5;
color: #7b1fa2;
}
.badge-situational {
background-color: #e8f5e8;
color: #388e3c;
}
.badge-easy {
background-color: #e8f5e8;
color: #2e7d32;
}
.badge-medium {
background-color: #fff3e0;
color: #f57c00;
}
.badge-hard {
background-color: #ffebee;
color: #c62828;
}
.ai-question-text {
font-size: 1rem;
line-height: 1.6;
color: var(--kaauh-primary-text);
margin-bottom: 0.75rem;
font-weight: 500;
}
.ai-question-meta {
display: flex;
justify-content: space-between;
align-items: center;
font-size: 0.85rem;
color: #6c757d;
border-top: 1px solid #e9ecef;
padding-top: 0.5rem;
}
.ai-question-category {
display: flex;
align-items: center;
gap: 0.25rem;
}
.ai-question-category i {
color: var(--kaauh-teal);
}
.ai-question-actions {
display: flex;
gap: 0.5rem;
}
.ai-question-actions button {
padding: 0.25rem 0.5rem;
font-size: 0.8rem;
border-radius: 0.25rem;
border: 1px solid var(--kaauh-border);
background-color: white;
color: var(--kaauh-primary-text);
transition: all 0.2s ease;
}
.ai-question-actions button:hover {
background-color: var(--kaauh-teal);
color: white;
border-color: var(--kaauh-teal);
}
.ai-questions-empty {
text-align: center;
padding: 3rem 1rem;
color: #6c757d;
}
.ai-questions-empty i {
color: var(--kaauh-teal);
opacity: 0.6;
margin-bottom: 1rem;
}
.ai-questions-loading {
text-align: center;
padding: 2rem;
}
.htmx-indicator {
display: none;
}
.htmx-indicator.htmx-request {
display: block;
}
/* Responsive adjustments */
@media (max-width: 768px) {
.action-buttons {
@ -200,6 +320,19 @@
.action-buttons .btn {
width: 100%;
}
.ai-question-header {
flex-direction: column;
align-items: flex-start;
gap: 0.5rem;
}
.ai-question-badges {
width: 100%;
}
.ai-question-meta {
flex-direction: column;
align-items: flex-start;
gap: 0.5rem;
}
}
</style>
{% endblock %}
@ -292,7 +425,7 @@
<i class="fas fa-calendar-check me-2"></i> {% trans "Interview Details" %}
</h5>
<div class="d-flex gap-2">
<span class="bg-primary-theme badge status-badge text-white">
{{interview.location_type}}
</span>
@ -378,6 +511,56 @@
</div>
</div>
<!-- AI Generated Questions Section -->
<div class="kaauh-card shadow-sm p-4 mb-4">
<div class="d-flex align-items-center justify-content-between mb-3">
<h5 class="mb-0" style="color: var(--kaauh-teal-dark); font-weight: 600;">
<i class="fas fa-brain me-2"></i> {% trans "AI Generated Questions" %}
</h5>
<div class="d-flex gap-2">
<button type="button"
class="btn btn-main-action btn-sm"
id="generateQuestionsBtn"
hx-post="{% url 'generate_ai_questions' schedule.slug %}"
hx-target="#aiQuestionsContainer"
hx-indicator="#generateQuestionsSpinner">
<i class="fas fa-magic me-1"></i> {% trans "Generate Questions" %}
</button>
<button type="button"
class="btn btn-outline-secondary btn-sm"
id="refreshQuestionsBtn"
hx-get="{% url 'generate_ai_questions' schedule.slug %}"
hx-target="#aiQuestionsContainer"
hx-indicator="#refreshQuestionsSpinner">
<i class="fas fa-sync-alt me-1"></i> {% trans "Refresh" %}
</button>
</div>
</div>
<!-- Loading Spinners -->
<div class="text-center py-3" id="generateQuestionsSpinner" class="htmx-indicator d-none">
<div class="spinner-border text-primary" role="status">
<span class="visually-hidden">{% trans "Generating questions..." %}</span>
</div>
<p class="mt-2 text-muted">{% trans "AI is generating personalized interview questions..." %}</p>
</div>
<div class="text-center py-3" id="refreshQuestionsSpinner" class="htmx-indicator d-none">
<div class="spinner-border text-secondary" role="status">
<span class="visually-hidden">{% trans "Refreshing..." %}</span>
</div>
<p class="mt-2 text-muted">{% trans "Loading questions..." %}</p>
</div>
<!-- Questions Container -->
<div id="aiQuestionsContainer">
<div class="text-center py-4 text-muted">
<i class="fas fa-brain fa-2x mb-3"></i>
<p class="mb-0">{% trans "No AI questions generated yet. Click 'Generate Questions' to create personalized interview questions based on the candidate's profile and job requirements." %}</p>
</div>
</div>
</div>
<div class="kaauh-card shadow-sm p-4">
<h5 class="mb-3" style="color: var(--kaauh-teal-dark); font-weight: 600;">
<i class="fas fa-history me-2"></i> {% trans "Interview Timeline" %}
@ -394,7 +577,7 @@
</div>
</div>
</div>
{% if schedule.status == 'confirmed' %}
<div class="timeline-item">
<div class="timeline-content">
@ -403,7 +586,7 @@
<h6 class="mb-1">{% trans "Interview Confirmed" %}</h6>
<p class="mb-0 text-muted">{% trans "Candidate has confirmed attendance" %}</p>
</div>
</div>
</div>
</div>
@ -416,7 +599,7 @@
<h6 class="mb-1">{% trans "Interview Completed" %}</h6>
<p class="mb-0 text-muted">{% trans "Interview has been completed" %}</p>
</div>
</div>
</div>
</div>
@ -429,7 +612,7 @@
<h6 class="mb-1">{% trans "Interview Cancelled" %}</h6>
<p class="mb-0 text-muted">{% trans "Interview was cancelled on: " %}{{ schedule.cancelled_at|date:"d-m-Y" }} {{ schedule.cancelled_at|date:"h:i A" }}</p>
</div>
</div>
</div>
</div>
@ -490,7 +673,7 @@
<i class="fas fa-user-plus me-1"></i> {% trans "Add Participants" %}
</button>
</div> {% endcomment %}
<div class="kaauh-card shadow-sm p-4">
<h5 class="mb-3" style="color: var(--kaauh-teal-dark); font-weight: 600;">
@ -759,4 +942,4 @@ document.addEventListener('DOMContentLoaded', function () {
});
});
</script>
{% endblock %}
{% endblock %}

View File

@ -0,0 +1,170 @@
{% load i18n %}
{% if questions %}
{% for question in questions %}
<div class="ai-question-item">
<div class="ai-question-header">
<div class="ai-question-badges">
<span class="ai-question-badge badge-{{ question.type|lower }}">
{% if question.type == 'Technical' %}
<i class="fas fa-code me-1"></i>
{% elif question.type == 'Behavioral' %}
<i class="fas fa-users me-1"></i>
{% elif question.type == 'Situational' %}
<i class="fas fa-lightbulb me-1"></i>
{% endif %}
{{ question.type }}
</span>
<span class="ai-question-badge badge-{{ question.difficulty|lower }}">
{% if question.difficulty == 'Easy' %}
<i class="fas fa-smile me-1"></i>
{% elif question.difficulty == 'Medium' %}
<i class="fas fa-meh me-1"></i>
{% elif question.difficulty == 'Hard' %}
<i class="fas fa-frown me-1"></i>
{% endif %}
{{ question.difficulty }}
</span>
{% if question.category %}
<span class="ai-question-badge badge-technical">
<i class="fas fa-tag me-1"></i>
{{ question.category }}
</span>
{% endif %}
</div>
</div>
<div class="ai-question-text">
{{ question.text|linebreaksbr }}
</div>
<div class="ai-question-meta">
<div class="ai-question-category">
<i class="fas fa-clock"></i>
<small>{% trans "Generated" %}: {{ question.created_at|date:"d M Y, H:i" }}</small>
</div>
<div class="ai-question-actions">
<button type="button"
class="btn btn-sm"
onclick="copyQuestionText('{{ question.id }}')"
title="{% trans 'Copy question' %}">
<i class="fas fa-copy"></i>
</button>
<button type="button"
class="btn btn-sm"
onclick="toggleQuestionNotes('{{ question.id }}')"
title="{% trans 'Add notes' %}">
<i class="fas fa-sticky-note"></i>
</button>
</div>
</div>
<!-- Hidden notes section -->
<div id="questionNotes_{{ question.id }}" class="mt-3" style="display: none;">
<textarea class="form-control"
rows="3"
placeholder="{% trans 'Add your notes for this question...' %}"></textarea>
<div class="mt-2">
<button type="button"
class="btn btn-main-action btn-sm"
onclick="saveQuestionNotes('{{ question.id }}')">
<i class="fas fa-save me-1"></i> {% trans "Save Notes" %}
</button>
</div>
</div>
</div>
{% endfor %}
{% else %}
<div class="ai-questions-empty">
<i class="fas fa-brain fa-3x mb-3"></i>
<h5 class="mb-3">{% trans "No AI Questions Available" %}</h5>
<p class="mb-0">{% trans "Click 'Generate Questions' to create personalized interview questions based on the candidate's profile and job requirements." %}</p>
</div>
{% endif %}
<script>
// Copy question text to clipboard
function copyQuestionText(questionId) {
const questionText = document.querySelector(`#questionText_${questionId}`);
if (questionText) {
navigator.clipboard.writeText(questionText.textContent).then(() => {
// Show success feedback
showNotification('{% trans "Question copied to clipboard!" %}', 'success');
}).catch(err => {
console.error('Failed to copy text: ', err);
showNotification('{% trans "Failed to copy question" %}', 'error');
});
}
}
// Toggle question notes visibility
function toggleQuestionNotes(questionId) {
const notesSection = document.getElementById(`questionNotes_${questionId}`);
if (notesSection) {
if (notesSection.style.display === 'none') {
notesSection.style.display = 'block';
} else {
notesSection.style.display = 'none';
}
}
}
// Save question notes (placeholder function)
function saveQuestionNotes(questionId) {
const notesTextarea = document.querySelector(`#questionNotes_${questionId} textarea`);
if (notesTextarea) {
// Here you would typically save to backend
const notes = notesTextarea.value;
console.log(`Saving notes for question ${questionId}:`, notes);
showNotification('{% trans "Notes saved successfully!" %}', 'success');
// Hide notes section after saving
setTimeout(() => {
toggleQuestionNotes(questionId);
}, 1000);
}
}
// Show notification (helper function)
function showNotification(message, type = 'info') {
// Create notification element
const notification = document.createElement('div');
notification.className = `alert alert-${type === 'success' ? 'success' : type === 'error' ? 'danger' : 'info'} alert-dismissible fade show position-fixed`;
notification.style.cssText = `
position: fixed;
top: 20px;
right: 20px;
z-index: 9999;
min-width: 300px;
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
`;
notification.innerHTML = `
${message}
<button type="button" class="btn-close" data-bs-dismiss="alert" aria-label="Close"></button>
`;
document.body.appendChild(notification);
// Auto-remove after 3 seconds
setTimeout(() => {
if (notification.parentNode) {
notification.parentNode.removeChild(notification);
}
}, 3000);
}
// Initialize question text elements with IDs for copying
document.addEventListener('DOMContentLoaded', function() {
const questionTexts = document.querySelectorAll('.ai-question-text');
questionTexts.forEach((element, index) => {
// Add ID to question text elements for copying functionality
const questionItem = element.closest('.ai-question-item');
if (questionItem) {
const questionId = questionItem.querySelector('[onclick*="copyQuestionText"]')?.getAttribute('onclick').match(/'(\d+)'/)?.[1];
if (questionId) {
element.id = `questionText_${questionId}`;
}
}
});
});
</script>

View File

@ -199,7 +199,7 @@
<div class="col-md-4 d-flex">
<div class="filter-buttons">
<button type="submit" class="btn btn-main-action btn-sm">
<i class="fas fa-filter me-1"></i> {% trans "Apply Filter" %}
<i class="fas fa-filter me-1"></i> {% trans "Apply Filters" %}
</button>
{% if request.GET.q or request.GET.nationality or request.GET.gender %}
<a href="{% url 'person_list' %}" class="btn btn-outline-secondary btn-sm">