HH/generate_saudi_data.py
2026-01-01 16:44:42 +03:00

1413 lines
59 KiB
Python

"""
Saudi-influenced data generator for PX360
This script generates realistic test data for the PX360 system with:
- Saudi hospital names
- Arabic names for patients and staff
- Saudi cities and regions
- Realistic medical specializations
- Sample complaints, surveys, and actions
"""
import os
import random
from datetime import datetime, timedelta
import django
# Setup Django
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.dev')
# Disable Celery tasks during data generation
os.environ.setdefault('CELERY_TASK_ALWAYS_EAGER', 'True')
django.setup()
from django.contrib.auth import get_user_model
from django.contrib.contenttypes.models import ContentType
from django.utils import timezone
from apps.accounts.models import User
from apps.appreciation.models import (
Appreciation,
AppreciationCategory,
AppreciationBadge,
UserBadge,
AppreciationStats,
AppreciationStatus,
AppreciationVisibility,
)
from apps.complaints.models import Complaint, ComplaintUpdate
from apps.journeys.models import (
PatientJourneyInstance,
PatientJourneyStageInstance,
PatientJourneyStageTemplate,
PatientJourneyTemplate,
)
from apps.organizations.models import Department, Hospital, Patient, Physician
from apps.projects.models import QIProject
from apps.px_action_center.models import PXAction
from apps.surveys.models import SurveyInstance, SurveyQuestion, SurveyResponse, SurveyTemplate
# Saudi-specific data
SAUDI_HOSPITALS = [
{'name': 'Alhammadi Hospital', 'name_ar': 'مستشفى الحمادي', 'city': 'Riyadh', 'code': 'HH'},
# {'name': 'King Faisal Specialist Hospital', 'name_ar': 'مستشفى الملك فيصل التخصصي', 'city': 'Riyadh', 'code': 'KFSH'},
# {'name': 'King Abdulaziz Medical City', 'name_ar': 'مدينة الملك عبدالعزيز الطبية', 'city': 'Riyadh', 'code': 'KAMC'},
# {'name': 'King Khalid University Hospital', 'name_ar': 'مستشفى الملك خالد الجامعي', 'city': 'Riyadh', 'code': 'KKUH'},
# {'name': 'King Abdullah Medical Complex', 'name_ar': 'مجمع الملك عبدالله الطبي', 'city': 'Jeddah', 'code': 'KAMC-JED'},
]
SAUDI_CITIES = ['Riyadh', 'Jeddah', 'Mecca', 'Medina', 'Dammam', 'Khobar', 'Dhahran', 'Taif', 'Buraidah', 'Tabuk']
ARABIC_FIRST_NAMES_MALE = ['محمد', 'أحمد', 'عبدالله', 'خالد', 'سعود', 'فهد', 'عبدالعزيز', 'سلطان', 'فيصل', 'عمر']
ARABIC_FIRST_NAMES_FEMALE = ['فاطمة', 'عائشة', 'مريم', 'نورة', 'سارة', 'هند', 'لطيفة', 'منى', 'ريم', 'جواهر']
ARABIC_LAST_NAMES = ['العتيبي', 'الدوسري', 'القحطاني', 'الشمري', 'الحربي', 'المطيري', 'العنزي', 'الزهراني', 'الغامدي', 'الشهري']
ENGLISH_FIRST_NAMES_MALE = ['Mohammed', 'Ahmed', 'Abdullah', 'Khalid', 'Saud', 'Fahd', 'Abdulaziz', 'Sultan', 'Faisal', 'Omar']
ENGLISH_FIRST_NAMES_FEMALE = ['Fatimah', 'Aisha', 'Maryam', 'Noura', 'Sarah', 'Hind', 'Latifa', 'Mona', 'Reem', 'Jawaher']
ENGLISH_LAST_NAMES = ['Al-Otaibi', 'Al-Dosari', 'Al-Qahtani', 'Al-Shammari', 'Al-Harbi', 'Al-Mutairi', 'Al-Anazi', 'Al-Zahrani', 'Al-Ghamdi', 'Al-Shehri']
DEPARTMENTS = [
{'name': 'Emergency Department', 'name_ar': 'قسم الطوارئ', 'code': 'ER'},
{'name': 'Outpatient Department', 'name_ar': 'قسم العيادات الخارجية', 'code': 'OPD'},
{'name': 'Internal Medicine', 'name_ar': 'الطب الباطني', 'code': 'IM'},
{'name': 'Surgery', 'name_ar': 'الجراحة', 'code': 'SURG'},
{'name': 'Pediatrics', 'name_ar': 'طب الأطفال', 'code': 'PEDS'},
{'name': 'Obstetrics & Gynecology', 'name_ar': 'النساء والولادة', 'code': 'OBGYN'},
{'name': 'Radiology', 'name_ar': 'الأشعة', 'code': 'RAD'},
{'name': 'Laboratory', 'name_ar': 'المختبر', 'code': 'LAB'},
{'name': 'Pharmacy', 'name_ar': 'الصيدلية', 'code': 'PHARM'},
{'name': 'Cardiology', 'name_ar': 'أمراض القلب', 'code': 'CARD'},
]
SPECIALIZATIONS = [
'Internal Medicine', 'General Surgery', 'Pediatrics', 'Obstetrics & Gynecology',
'Cardiology', 'Orthopedics', 'Neurology', 'Dermatology', 'Ophthalmology',
'ENT', 'Urology', 'Nephrology', 'Gastroenterology', 'Pulmonology'
]
COMPLAINT_TITLES = [
'Long waiting time in emergency department',
'Poor communication from nursing staff',
'Delayed lab results',
'Billing discrepancy',
'Unclean patient room',
'Medication error',
'Rude behavior from reception staff',
'Difficulty scheduling appointment',
'Lost medical records',
'Inadequate pain management',
]
COMPLAINT_TITLES_AR = [
'وقت انتظار طويل في قسم الطوارئ',
'ضعف التواصل من طاقم التمريض',
'تأخر نتائج المختبر',
'خطأ في الفاتورة',
'غرفة المريض غير نظيفة',
'خطأ في الدواء',
'سلوك غير لائق من موظف الاستقبال',
'صعوبة في حجز موعد',
'فقدان السجلات الطبية',
'إدارة غير كافية للألم',
]
def clear_existing_data():
"""Clear all existing data from the database"""
print("\n" + "="*60)
print("Clearing Existing Data...")
print("="*60 + "\n")
from apps.feedback.models import Feedback, FeedbackAttachment, FeedbackResponse
from apps.social.models import SocialMention
from apps.callcenter.models import CallCenterInteraction
# Delete in reverse order of dependencies
print("Deleting survey instances...")
SurveyResponse.objects.all().delete()
SurveyInstance.objects.all().delete()
print("Deleting journey instances...")
PatientJourneyStageInstance.objects.all().delete()
PatientJourneyInstance.objects.all().delete()
print("Deleting PX actions...")
PXAction.objects.all().delete()
print("Deleting QI projects...")
QIProject.objects.all().delete()
print("Deleting social mentions...")
SocialMention.objects.all().delete()
print("Deleting call center interactions...")
CallCenterInteraction.objects.all().delete()
print("Deleting feedback...")
FeedbackResponse.objects.all().delete()
FeedbackAttachment.objects.all().delete()
Feedback.objects.all().delete()
print("Deleting complaints...")
ComplaintUpdate.objects.all().delete()
Complaint.objects.all().delete()
print("Deleting survey templates...")
SurveyQuestion.objects.all().delete()
SurveyTemplate.objects.all().delete()
print("Deleting journey templates...")
PatientJourneyStageTemplate.objects.all().delete()
PatientJourneyTemplate.objects.all().delete()
print("Deleting patients...")
Patient.objects.all().delete()
print("Deleting physician ratings...")
from apps.physicians.models import PhysicianMonthlyRating
PhysicianMonthlyRating.objects.all().delete()
print("Deleting physicians...")
Physician.objects.all().delete()
print("Deleting departments...")
Department.objects.all().delete()
print("Deleting hospitals...")
Hospital.objects.all().delete()
print("Deleting appreciation data...")
UserBadge.objects.all().delete()
AppreciationStats.objects.all().delete()
Appreciation.objects.all().delete()
# Categories and Badges are preserved (seeded separately)
print("Deleting users (except superusers)...")
User.objects.filter(is_superuser=False).delete()
print("\n✓ All existing data cleared successfully!\n")
def generate_saudi_phone():
"""Generate Saudi phone number"""
return f"+966{random.choice(['50', '53', '54', '55', '56', '58'])}{random.randint(1000000, 9999999)}"
def generate_mrn():
"""Generate Medical Record Number"""
return f"MRN{random.randint(100000, 999999)}"
def generate_national_id():
"""Generate Saudi National ID"""
return f"{random.randint(1000000000, 2999999999)}"
def create_hospitals():
"""Create Saudi hospitals"""
print("Creating hospitals...")
hospitals = []
for hosp_data in SAUDI_HOSPITALS:
hospital, created = Hospital.objects.get_or_create(
code=hosp_data['code'],
defaults={
'name': hosp_data['name'],
'name_ar': hosp_data['name_ar'],
'city': hosp_data['city'],
'phone': generate_saudi_phone(),
'status': 'active',
'capacity': random.randint(200, 800),
}
)
hospitals.append(hospital)
if created:
print(f" Created: {hospital.name}")
return hospitals
def create_departments(hospitals):
"""Create departments for each hospital"""
print("Creating departments...")
departments = []
for hospital in hospitals:
for dept_data in DEPARTMENTS:
dept, created = Department.objects.get_or_create(
hospital=hospital,
code=dept_data['code'],
defaults={
'name': dept_data['name'],
'name_ar': dept_data['name_ar'],
'status': 'active',
}
)
departments.append(dept)
if created:
print(f" Created: {hospital.name} - {dept.name}")
return departments
def create_physicians(hospitals, departments):
"""Create physicians"""
print("Creating physicians...")
physicians = []
for i in range(50):
hospital = random.choice(hospitals)
dept = random.choice([d for d in departments if d.hospital == hospital])
first_name_ar = random.choice(ARABIC_FIRST_NAMES_MALE)
last_name_ar = random.choice(ARABIC_LAST_NAMES)
first_name = random.choice(ENGLISH_FIRST_NAMES_MALE)
last_name = random.choice(ENGLISH_LAST_NAMES)
physician, created = Physician.objects.get_or_create(
license_number=f"LIC{random.randint(10000, 99999)}",
defaults={
'first_name': first_name,
'last_name': last_name,
'first_name_ar': first_name_ar,
'last_name_ar': last_name_ar,
'specialization': random.choice(SPECIALIZATIONS),
'hospital': hospital,
'department': dept,
'phone': generate_saudi_phone(),
'status': 'active',
}
)
physicians.append(physician)
print(f" Created {len(physicians)} physicians")
return physicians
def create_patients(hospitals):
"""Create patients"""
print("Creating patients...")
patients = []
for i in range(100):
gender = random.choice(['male', 'female'])
if gender == 'male':
first_name_ar = random.choice(ARABIC_FIRST_NAMES_MALE)
first_name = random.choice(ENGLISH_FIRST_NAMES_MALE)
else:
first_name_ar = random.choice(ARABIC_FIRST_NAMES_FEMALE)
first_name = random.choice(ENGLISH_FIRST_NAMES_FEMALE)
last_name_ar = random.choice(ARABIC_LAST_NAMES)
last_name = random.choice(ENGLISH_LAST_NAMES)
patient, created = Patient.objects.get_or_create(
mrn=generate_mrn(),
defaults={
'first_name': first_name,
'last_name': last_name,
'first_name_ar': first_name_ar,
'last_name_ar': last_name_ar,
'national_id': generate_national_id(),
'phone': generate_saudi_phone(),
'email': f"{first_name.lower()}.{last_name.lower()}@example.com",
'gender': gender,
'date_of_birth': datetime.now().date() - timedelta(days=random.randint(365*18, 365*80)),
'city': random.choice(SAUDI_CITIES),
'primary_hospital': random.choice(hospitals),
'status': 'active',
}
)
patients.append(patient)
print(f" Created {len(patients)} patients")
return patients
def create_users(hospitals):
"""Create system users"""
print("Creating users...")
from django.contrib.auth.models import Group
# Create or get groups
px_admin_group, _ = Group.objects.get_or_create(name='PX Admin')
hospital_admin_group, _ = Group.objects.get_or_create(name='Hospital Admin')
# Create PX Admin
px_admin, created = User.objects.get_or_create(
username='px_admin',
defaults={
'email': 'px.admin@alhammadi.sa',
'first_name': 'PX',
'last_name': 'Administrator',
'is_staff': True,
'is_superuser': True,
}
)
if created:
px_admin.set_password('admin123')
px_admin.save()
px_admin.groups.add(px_admin_group)
print(" Created PX Admin")
# Create Hospital Admins
for hospital in hospitals:
user, created = User.objects.get_or_create(
username=f'admin_{hospital.code.lower()}',
defaults={
'email': f'admin@{hospital.code.lower()}.sa',
'first_name': 'Hospital',
'last_name': 'Admin',
'hospital': hospital,
'is_staff': True,
}
)
if created:
user.set_password('admin123')
user.save()
user.groups.add(hospital_admin_group)
print(f" Created Hospital Admin for {hospital.name}")
def create_complaints(patients, hospitals, physicians, users):
"""Create sample complaints with 2 years of data"""
print("Creating complaints (2 years of data)...")
complaints = []
now = timezone.now()
# Generate complaints over 2 years (730 days)
# Average 3-5 complaints per day = ~1200-1800 total
for day_offset in range(730):
# Random number of complaints per day (0-8, weighted towards 2-4)
num_complaints = random.choices([0, 1, 2, 3, 4, 5, 6, 7, 8], weights=[5, 10, 20, 25, 20, 10, 5, 3, 2])[0]
for _ in range(num_complaints):
patient = random.choice(patients)
hospital = patient.primary_hospital or random.choice(hospitals)
created_date = now - timedelta(days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59))
# Status distribution based on age
if day_offset < 7: # Last week - more open/in_progress
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[30, 40, 20, 10])[0]
elif day_offset < 30: # Last month
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[10, 30, 40, 20])[0]
else: # Older - mostly resolved/closed
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[2, 5, 30, 63])[0]
complaint = Complaint.objects.create(
patient=patient,
hospital=hospital,
department=random.choice(hospital.departments.all()) if hospital.departments.exists() else None,
physician=random.choice(physicians) if random.random() > 0.5 else None,
title=random.choice(COMPLAINT_TITLES),
description=f"Detailed description of the complaint. Patient experienced issues during their visit.",
category=random.choice(['clinical_care', 'staff_behavior', 'facility', 'wait_time', 'billing', 'communication']),
priority=random.choice(['low', 'medium', 'high', 'urgent']),
severity=random.choice(['low', 'medium', 'high', 'critical']),
source=random.choice(['patient', 'family', 'survey', 'call_center', 'moh', 'other']),
status=status,
encounter_id=f"ENC{random.randint(100000, 999999)}",
assigned_to=random.choice(users) if random.random() > 0.5 else None,
)
# Override created_at
complaint.created_at = created_date
# Set resolved/closed dates if applicable
if status in ['resolved', 'closed']:
complaint.resolved_at = created_date + timedelta(hours=random.randint(24, 168))
complaint.resolved_by = random.choice(users)
if status == 'closed':
complaint.closed_at = complaint.resolved_at + timedelta(hours=random.randint(1, 48))
complaint.closed_by = random.choice(users)
complaint.save()
complaints.append(complaint)
print(f" Created {len(complaints)} complaints over 2 years")
return complaints
def create_inquiries(patients, hospitals, users):
"""Create inquiries with 2 years of data"""
print("Creating inquiries (2 years of data)...")
from apps.complaints.models import Inquiry
inquiries = []
now = timezone.now()
inquiry_subjects = [
'Question about appointment scheduling',
'Billing inquiry',
'Request for medical records',
'General information request',
'Pharmacy hours inquiry',
'Lab results inquiry',
'Insurance coverage question',
'Visitor policy question',
'Parking information',
'Department location inquiry',
]
# Generate inquiries over 2 years (730 days)
# Average 1-2 inquiries per day = ~500-700 total
for day_offset in range(730):
num_inquiries = random.choices([0, 1, 2, 3], weights=[30, 40, 25, 5])[0]
for _ in range(num_inquiries):
patient = random.choice(patients) if random.random() > 0.3 else None
hospital = (patient.primary_hospital if patient else None) or random.choice(hospitals)
created_date = now - timedelta(days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59))
# Status distribution based on age
if day_offset < 7: # Last week
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[40, 35, 20, 5])[0]
elif day_offset < 30: # Last month
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[15, 30, 40, 15])[0]
else: # Older
status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[3, 7, 40, 50])[0]
inquiry = Inquiry.objects.create(
patient=patient,
contact_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}" if not patient else '',
contact_phone=generate_saudi_phone() if not patient else '',
contact_email=f"inquiry{random.randint(1000,9999)}@example.com" if not patient else '',
hospital=hospital,
department=random.choice(hospital.departments.all()) if hospital.departments.exists() and random.random() > 0.6 else None,
subject=random.choice(inquiry_subjects),
message=f"I would like to inquire about {random.choice(['appointment', 'billing', 'services', 'procedures'])}. Please provide information.",
category=random.choice(['appointment', 'billing', 'medical_records', 'general', 'other']),
status=status,
assigned_to=random.choice(users) if random.random() > 0.5 else None,
)
# Override created_at
inquiry.created_at = created_date
# Set response if resolved/closed
if status in ['resolved', 'closed']:
inquiry.response = "Thank you for your inquiry. We have addressed your question."
inquiry.responded_at = created_date + timedelta(hours=random.randint(2, 72))
inquiry.responded_by = random.choice(users)
inquiry.save()
inquiries.append(inquiry)
print(f" Created {len(inquiries)} inquiries over 2 years")
return inquiries
def create_feedback(patients, hospitals, physicians, users):
"""Create sample feedback"""
print("Creating feedback...")
from apps.feedback.models import Feedback, FeedbackResponse
feedback_titles = [
'Excellent care from Dr. Ahmed',
'Very satisfied with the service',
'Suggestion to improve waiting area',
'Great experience at the hospital',
'Staff was very helpful and kind',
'Clean and well-maintained facility',
'Quick and efficient service',
'Appreciate the professionalism',
'Suggestion for better parking',
'Outstanding nursing care',
]
feedback_messages = [
'I had a wonderful experience. The staff was very professional and caring.',
'The doctor took time to explain everything clearly. Very satisfied.',
'I suggest adding more seating in the waiting area for better comfort.',
'Everything was excellent from registration to discharge.',
'The nurses were extremely helpful and answered all my questions.',
'The facility is very clean and well-organized.',
'I was seen quickly and the process was very smooth.',
'I appreciate the high level of professionalism shown by all staff.',
'The parking area could be improved with better signage.',
'The nursing staff provided outstanding care during my stay.',
]
feedbacks = []
for i in range(40):
patient = random.choice(patients)
hospital = patient.primary_hospital or random.choice(hospitals)
is_anonymous = random.random() < 0.2 # 20% anonymous
feedback = Feedback.objects.create(
patient=None if is_anonymous else patient,
is_anonymous=is_anonymous,
contact_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}" if is_anonymous else '',
contact_email=f"anonymous{i}@example.com" if is_anonymous else '',
contact_phone=generate_saudi_phone() if is_anonymous else '',
hospital=hospital,
department=random.choice(hospital.departments.all()) if hospital.departments.exists() and random.random() > 0.5 else None,
physician=random.choice(physicians) if random.random() > 0.6 else None,
feedback_type=random.choice(['compliment', 'suggestion', 'general', 'inquiry']),
title=random.choice(feedback_titles),
message=random.choice(feedback_messages),
category=random.choice(['clinical_care', 'staff_service', 'facility', 'communication', 'appointment', 'cleanliness']),
rating=random.randint(3, 5) if random.random() > 0.3 else None,
priority=random.choice(['low', 'medium', 'high']),
sentiment=random.choice(['positive', 'neutral', 'negative']),
sentiment_score=random.uniform(0.3, 1.0) if random.random() > 0.7 else None,
status=random.choice(['submitted', 'reviewed', 'acknowledged', 'closed']),
encounter_id=f"ENC{random.randint(100000, 999999)}" if random.random() > 0.5 else '',
assigned_to=random.choice(users) if random.random() > 0.5 else None,
is_featured=random.random() < 0.15, # 15% featured
requires_follow_up=random.random() < 0.2, # 20% require follow-up
)
# Add initial response
FeedbackResponse.objects.create(
feedback=feedback,
response_type='note',
message=f"Feedback received and logged in the system.",
created_by=random.choice(users),
is_internal=True,
)
# Add additional responses for some feedback
if feedback.status in ['reviewed', 'acknowledged', 'closed'] and random.random() > 0.5:
FeedbackResponse.objects.create(
feedback=feedback,
response_type='response',
message="Thank you for your feedback. We appreciate your input and will work to improve our services.",
created_by=random.choice(users),
is_internal=False,
)
feedbacks.append(feedback)
print(f" Created {len(feedbacks)} feedback items")
return feedbacks
def create_survey_templates(hospitals):
"""Create survey templates"""
print("Creating survey templates...")
# Check if templates already exist
existing_count = SurveyTemplate.objects.count()
if existing_count > 0:
print(f" Survey templates already exist ({existing_count} found), skipping creation...")
return
for hospital in hospitals[:2]: # Create for first 2 hospitals
# OPD Survey
template = SurveyTemplate.objects.create(
name=f'OPD Patient Satisfaction Survey - {hospital.code}',
name_ar='استبيان رضا مرضى العيادات الخارجية',
description='Survey for outpatient department visits',
description_ar='استبيان لزيارات قسم العيادات الخارجية',
hospital=hospital,
survey_type='stage',
scoring_method='average',
negative_threshold=3.0,
is_active=True,
)
# Create questions
questions_data = [
{'text': 'How would you rate your overall experience?', 'text_ar': 'كيف تقيم تجربتك الإجمالية؟', 'type': 'rating'},
{'text': 'How likely are you to recommend us?', 'text_ar': 'ما مدى احتمالية توصيتك بنا؟', 'type': 'nps'},
{'text': 'Was the staff courteous and helpful?', 'text_ar': 'هل كان الموظفون مهذبين ومتعاونين؟', 'type': 'yes_no'},
{'text': 'Any additional comments?', 'text_ar': 'أي تعليقات إضافية؟', 'type': 'textarea'},
]
for idx, q_data in enumerate(questions_data):
SurveyQuestion.objects.create(
survey_template=template,
text=q_data['text'],
text_ar=q_data['text_ar'],
question_type=q_data['type'],
order=idx,
is_required=True if idx < 2 else False,
)
print(f" Created survey template for {hospital.name}")
def create_journey_templates(hospitals):
"""Create journey templates"""
print("Creating journey templates...")
for hospital in hospitals[:2]:
# OPD Journey
journey_template, created = PatientJourneyTemplate.objects.get_or_create(
hospital=hospital,
journey_type='opd',
name='OPD Journey',
defaults={
'name_ar': 'رحلة العيادات الخارجية',
'is_active': True,
'is_default': True,
}
)
if created:
# Create stages
stages_data = [
{'name': 'Registration', 'name_ar': 'التسجيل', 'code': 'REG', 'trigger': 'OPD_REGISTRATION'},
{'name': 'MD Consultation', 'name_ar': 'استشارة الطبيب', 'code': 'MD', 'trigger': 'OPD_VISIT_COMPLETED'},
{'name': 'Laboratory', 'name_ar': 'المختبر', 'code': 'LAB', 'trigger': 'LAB_COMPLETED'},
{'name': 'Pharmacy', 'name_ar': 'الصيدلية', 'code': 'PHARM', 'trigger': 'PHARMACY_DISPENSED'},
]
for idx, stage_data in enumerate(stages_data):
PatientJourneyStageTemplate.objects.create(
journey_template=journey_template,
name=stage_data['name'],
name_ar=stage_data['name_ar'],
code=stage_data['code'],
order=idx,
trigger_event_code=stage_data['trigger'],
is_active=True,
)
print(f" Created journey template for {hospital.name}")
def create_qi_projects(hospitals):
"""Create QI projects"""
print("Creating QI projects...")
project_names = [
('Reduce ER Wait Times', 'تقليل أوقات الانتظار في الطوارئ'),
('Improve Patient Satisfaction Scores', 'تحسين درجات رضا المرضى'),
('Enhance Medication Safety', 'تعزيز سلامة الأدوية'),
('Streamline Discharge Process', 'تبسيط عملية الخروج'),
]
projects = []
for hospital in hospitals[:2]:
for name_en, name_ar in project_names[:2]:
project = QIProject.objects.create(
name=name_en,
name_ar=name_ar,
description=f"Quality improvement initiative to {name_en.lower()}",
hospital=hospital,
status=random.choice(['active', 'pending', 'completed']),
start_date=datetime.now().date() - timedelta(days=random.randint(30, 180)),
target_completion_date=datetime.now().date() + timedelta(days=random.randint(30, 180)),
)
projects.append(project)
print(f" Created {len(projects)} QI projects")
return projects
def create_px_actions(complaints, hospitals, users):
"""Create PX actions"""
print("Creating PX actions...")
actions = []
for i in range(20):
hospital = random.choice(hospitals)
action = PXAction.objects.create(
source_type=random.choice(['survey', 'complaint', 'social_media', 'call_center']),
title=f"Action: {random.choice(COMPLAINT_TITLES)}",
description="Action created to address patient feedback and improve experience.",
hospital=hospital,
department=random.choice(hospital.departments.all()) if hospital.departments.exists() else None,
category=random.choice(['clinical_quality', 'patient_safety', 'service_quality', 'staff_behavior']),
priority=random.choice(['low', 'medium', 'high', 'urgent']),
severity=random.choice(['low', 'medium', 'high', 'critical']),
status=random.choice(['open', 'in_progress', 'pending_approval', 'approved', 'closed']),
assigned_to=random.choice(users) if random.random() > 0.3 else None,
)
actions.append(action)
print(f" Created {len(actions)} PX actions")
return actions
def create_journey_instances(journey_templates, patients):
"""Create journey instances"""
print("Creating journey instances...")
from apps.journeys.models import PatientJourneyTemplate
templates = PatientJourneyTemplate.objects.filter(is_active=True)
if not templates.exists():
print(" No journey templates found, skipping...")
return []
instances = []
for i in range(20):
template = random.choice(templates)
patient = random.choice(patients)
instance = PatientJourneyInstance.objects.create(
journey_template=template,
patient=patient,
encounter_id=f"ENC{random.randint(100000, 999999)}",
hospital=template.hospital,
status=random.choice(['active', 'completed']),
)
# Create stage instances
for stage_template in template.stages.all():
PatientJourneyStageInstance.objects.create(
journey_instance=instance,
stage_template=stage_template,
status=random.choice(['pending', 'completed']),
)
instances.append(instance)
print(f" Created {len(instances)} journey instances")
return instances
def create_survey_instances(survey_templates, patients, physicians):
"""Create survey instances"""
print("Creating survey instances...")
from apps.surveys.models import SurveyTemplate
templates = SurveyTemplate.objects.filter(is_active=True)
if not templates.exists():
print(" No survey templates found, skipping...")
return []
instances = []
for i in range(30):
template = random.choice(templates)
patient = random.choice(patients)
physician = random.choice(physicians) if random.random() > 0.3 else None
instance = SurveyInstance.objects.create(
survey_template=template,
patient=patient,
delivery_channel=random.choice(['sms', 'whatsapp', 'email']),
recipient_phone=patient.phone,
recipient_email=patient.email,
status=random.choice(['sent', 'completed']),
sent_at=timezone.now() - timedelta(days=random.randint(1, 30)),
metadata={'physician_id': str(physician.id)} if physician else {},
)
# If completed, add responses
if instance.status == 'completed':
instance.completed_at = timezone.now() - timedelta(days=random.randint(0, 29))
for question in template.questions.all():
if question.question_type in ['rating', 'likert']:
SurveyResponse.objects.create(
survey_instance=instance,
question=question,
numeric_value=random.randint(1, 5),
)
elif question.question_type == 'nps':
SurveyResponse.objects.create(
survey_instance=instance,
question=question,
numeric_value=random.randint(0, 10),
)
instance.calculate_score()
instance.save()
instances.append(instance)
print(f" Created {len(instances)} survey instances")
return instances
def create_call_center_interactions(patients, hospitals, users):
"""Create call center interactions"""
print("Creating call center interactions...")
from apps.callcenter.models import CallCenterInteraction
interactions = []
for i in range(25):
patient = random.choice(patients)
hospital = patient.primary_hospital or random.choice(hospitals)
interaction = CallCenterInteraction.objects.create(
patient=patient,
hospital=hospital,
agent=random.choice(users) if random.random() > 0.3 else None,
call_type=random.choice(['inquiry', 'complaint', 'appointment', 'follow_up', 'feedback']),
subject=f"Call regarding {random.choice(['appointment', 'billing', 'test results', 'medication'])}",
notes="Patient called with inquiry. Issue resolved during call.",
satisfaction_rating=random.randint(1, 5),
wait_time_seconds=random.randint(30, 600),
call_duration_seconds=random.randint(120, 900),
resolved=random.choice([True, False]),
)
interactions.append(interaction)
print(f" Created {len(interactions)} call center interactions")
return interactions
def create_social_mentions(hospitals):
"""Create social media mentions"""
print("Creating social media mentions...")
from apps.social.models import SocialMention
mentions = []
for i in range(15):
hospital = random.choice(hospitals)
mention = SocialMention.objects.create(
platform=random.choice(['twitter', 'facebook', 'instagram']),
post_url=f"https://twitter.com/user/status/{random.randint(1000000, 9999999)}",
post_id=f"POST{random.randint(100000, 999999)}",
author_username=f"user{random.randint(100, 999)}",
author_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}",
content=f"Great experience at {hospital.name}! The staff was very professional.",
hospital=hospital,
sentiment=random.choice(['positive', 'neutral', 'negative']),
sentiment_score=random.uniform(-1, 1),
likes_count=random.randint(0, 100),
shares_count=random.randint(0, 50),
comments_count=random.randint(0, 30),
posted_at=timezone.now() - timedelta(days=random.randint(1, 30)),
)
mentions.append(mention)
print(f" Created {len(mentions)} social media mentions")
return mentions
def create_physician_monthly_ratings(physicians):
"""Create physician monthly ratings for the last 6 months"""
print("Creating physician monthly ratings...")
from apps.physicians.models import PhysicianMonthlyRating
from decimal import Decimal
ratings = []
now = datetime.now()
# Generate ratings for last 6 months
for physician in physicians:
for months_ago in range(6):
target_date = now - timedelta(days=30 * months_ago)
year = target_date.year
month = target_date.month
# Generate realistic ratings (mostly good, some variation)
base_rating = random.uniform(3.5, 4.8)
total_surveys = random.randint(5, 25)
# Calculate sentiment counts based on rating
if base_rating >= 4.0:
positive_count = int(total_surveys * random.uniform(0.7, 0.9))
negative_count = int(total_surveys * random.uniform(0.05, 0.15))
elif base_rating >= 3.0:
positive_count = int(total_surveys * random.uniform(0.4, 0.6))
negative_count = int(total_surveys * random.uniform(0.15, 0.3))
else:
positive_count = int(total_surveys * random.uniform(0.2, 0.4))
negative_count = int(total_surveys * random.uniform(0.3, 0.5))
neutral_count = total_surveys - positive_count - negative_count
rating, created = PhysicianMonthlyRating.objects.get_or_create(
physician=physician,
year=year,
month=month,
defaults={
'average_rating': Decimal(str(round(base_rating, 2))),
'total_surveys': total_surveys,
'positive_count': positive_count,
'neutral_count': neutral_count,
'negative_count': negative_count,
'md_consult_rating': Decimal(str(round(base_rating + random.uniform(-0.3, 0.3), 2))),
'metadata': {
'generated': True,
'generated_at': now.isoformat()
}
}
)
ratings.append(rating)
print(f" Created {len(ratings)} physician monthly ratings")
# Update rankings for each month
print(" Updating physician rankings...")
from apps.physicians.models import PhysicianMonthlyRating
from apps.organizations.models import Hospital, Department
# Get unique year-month combinations
periods = PhysicianMonthlyRating.objects.values_list('year', 'month').distinct()
for year, month in periods:
# Update hospital rankings
hospitals = Hospital.objects.filter(status='active')
for hospital in hospitals:
hospital_ratings = PhysicianMonthlyRating.objects.filter(
physician__hospital=hospital,
year=year,
month=month
).order_by('-average_rating')
for rank, rating in enumerate(hospital_ratings, start=1):
rating.hospital_rank = rank
rating.save(update_fields=['hospital_rank'])
# Update department rankings
departments = Department.objects.filter(status='active')
for department in departments:
dept_ratings = PhysicianMonthlyRating.objects.filter(
physician__department=department,
year=year,
month=month
).order_by('-average_rating')
for rank, rating in enumerate(dept_ratings, start=1):
rating.department_rank = rank
rating.save(update_fields=['department_rank'])
print(" ✓ Rankings updated successfully")
return ratings
def create_appreciations(users, physicians, hospitals, departments, categories):
"""Create appreciations with 2 years of historical data"""
print("Creating appreciations (2 years of data)...")
# Get ContentType for User and Physician
user_ct = ContentType.objects.get_for_model(User)
physician_ct = ContentType.objects.get_for_model(Physician)
# Message templates for generating realistic appreciations
message_templates_en = [
"Thank you for {action}. Your {quality} made a real difference in our patient's care.",
"I want to express my sincere appreciation for {action}. Your {quality} is truly exceptional.",
"Outstanding work! Your {action} and {quality} have not gone unnoticed.",
"Grateful for your {action}. The {quality} you demonstrate every day inspires us all.",
"A big thank you for {action}. Your {quality} sets an excellent example.",
"Exceptional job on {action}. Your {quality} is invaluable to our team.",
"Words cannot express how much I appreciate your {action}. Your {quality} shines through.",
"Thank you for going above and beyond with {action}. Your {quality} makes our hospital better.",
"Deeply grateful for your {action}. The {quality} you show is remarkable.",
"Your {action} has made a significant impact. Your {quality} is truly appreciated.",
]
message_templates_ar = [
"شكراً لك على {action}. {quality} الخاص بك أحدث فرقاً حقيقياً في رعاية مرضانا.",
"أود أن أعرب عن تقديري الخالص لـ {action}. {quality} استثنائي حقاً.",
"عمل رائع! {action} و{quality} لم يمرا مرور الكرام.",
"ممتن لـ {action}. {quality} الذي تظهره كل يوم يلهمنا جميعاً.",
"شكراً جزيلاً على {action}. {quality} يضع مثالاً ممتازاً.",
"عمل استثنائي في {action}. {quality} لا يقدر بثمن لفريقنا.",
"الكلمات لا تعبر عن مدى تقديري لـ {action}. {quality} يظهر بوضوح.",
"شكراً لتجاوز التوقعات مع {action}. {quality} يجعل مستشفانا أفضل.",
"عميق الامتنان لـ {action}. {quality} الذي تظهره مذهل.",
"لقد حدث {action} تأثيراً كبيراً. {quality} حقاً مقدر.",
]
actions = [
"providing excellent patient care", "outstanding teamwork", "quick response in emergency",
"thorough diagnosis", "compassionate patient interaction", "efficient workflow management",
"mentoring junior staff", "innovative solution implementation", "attention to detail",
"going the extra mile", "maintaining patient safety", "clear communication",
"timely treatment", "excellent bedside manner", "professional conduct",
]
qualities = [
"professionalism", "dedication", "expertise", "compassion", "attention to detail",
"efficiency", "leadership", "teamwork", "reliability", "positive attitude",
"patience", "kindness", "commitment", "excellence", "integrity",
]
appreciations = []
now = timezone.now()
# Weighted category distribution
category_weights = {
'excellent_care': 30,
'team_player': 20,
'going_extra_mile': 15,
'positive_attitude': 12,
'leadership': 10,
'innovation': 8,
'reliability': 3,
'mentorship': 2,
}
# Create category code mapping
category_map = {cat.code: cat for cat in categories}
# Generate appreciations over 2 years (730 days)
# Average 1-2 appreciations per day = ~800-1200 total
for day_offset in range(730):
# Recency bias: more appreciations in recent months
recency_factor = max(0.5, 1.0 - (day_offset / 1460)) # 0.5 to 1.0
# Number of appreciations per day (weighted by recency)
base_count = random.choices([0, 1, 2], weights=[30, 50, 20])[0]
num_appreciations = max(0, int(base_count * recency_factor))
for _ in range(num_appreciations):
# Select sender (users only - users send appreciations)
sender = random.choice(users)
# Select recipient (70% physician, 30% user)
is_physician_recipient = random.random() < 0.7
if is_physician_recipient:
recipient = random.choice(physicians)
recipient_ct = physician_ct
else:
# User recipients (excluding sender)
potential_recipients = [u for u in users if u.id != sender.id]
if not potential_recipients:
continue
recipient = random.choice(potential_recipients)
recipient_ct = user_ct
# Ensure sender ≠ recipient
if sender.id == recipient.id:
continue
# Determine hospital context
if is_physician_recipient:
hospital = recipient.hospital
else:
hospital = recipient.hospital if recipient.hospital else sender.hospital
if not hospital:
continue
# Determine department context
department = None
if is_physician_recipient and recipient.department:
department = recipient.department
elif random.random() < 0.3:
# Some appreciations have department context
hospital_depts = [d for d in departments if d.hospital == hospital]
if hospital_depts:
department = random.choice(hospital_depts)
# Select category (weighted distribution)
category_codes = list(category_map.keys())
weights = [category_weights[code] for code in category_codes]
category_code = random.choices(category_codes, weights=weights, k=1)[0]
category = category_map.get(category_code)
if not category:
continue
# Generate message
action = random.choice(actions)
quality = random.choice(qualities)
message_en = random.choice(message_templates_en).format(action=action, quality=quality)
message_ar = random.choice(message_templates_ar).format(action=action, quality=quality)
# Select visibility (40% private, 25% dept, 25% hospital, 10% public)
visibility = random.choices(
list(AppreciationVisibility.values),
weights=[40, 25, 25, 10],
k=1
)[0]
# Determine status based on age
if day_offset < 1: # Last 24 hours
status = random.choices(
list(AppreciationStatus.values),
weights=[20, 50, 30], # draft, sent, acknowledged
k=1
)[0]
elif day_offset < 7: # Last week
status = random.choices(
list(AppreciationStatus.values),
weights=[5, 40, 55],
k=1
)[0]
else: # Older
status = random.choices(
list(AppreciationStatus.values),
weights=[1, 10, 89],
k=1
)[0]
# Calculate timestamps
created_date = now - timedelta(
days=day_offset,
hours=random.randint(0, 23),
minutes=random.randint(0, 59)
)
sent_at = None
acknowledged_at = None
if status != AppreciationStatus.DRAFT:
# Sent time: 0-24 hours after creation (for older appreciations)
if day_offset < 1:
sent_delay = random.randint(0, 23)
else:
sent_delay = random.randint(1, 24)
sent_at = created_date + timedelta(hours=sent_delay)
if status == AppreciationStatus.ACKNOWLEDGED:
# Acknowledged time: 1-72 hours after sent
acknowledge_delay = random.randint(1, 72)
acknowledged_at = sent_at + timedelta(hours=acknowledge_delay)
# Anonymous option (15% anonymous)
is_anonymous = random.random() < 0.15
# Create appreciation
appreciation = Appreciation(
sender=sender if not is_anonymous else None,
recipient_content_type=recipient_ct,
recipient_object_id=recipient.id,
hospital=hospital,
department=department,
category=category,
message_en=message_en,
message_ar=message_ar,
visibility=visibility,
status=status,
is_anonymous=is_anonymous,
sent_at=sent_at,
acknowledged_at=acknowledged_at,
)
# Override created_at for historical data
appreciation.created_at = created_date
appreciation.save()
appreciations.append(appreciation)
print(f" Created {len(appreciations)} appreciations over 2 years")
return appreciations
def award_badges(badges, users, physicians, categories):
"""Award badges to users and physicians based on appreciations"""
print("Awarding badges...")
user_badges = []
# Get ContentType for User and Physician
user_ct = ContentType.objects.get_for_model(User)
physician_ct = ContentType.objects.get_for_model(Physician)
# Badge criteria mapping (using codes from seed command)
badge_criteria = {
'first_appreciation': {'min_count': 1, 'categories': None},
'appreciated_5': {'min_count': 5, 'categories': None},
'appreciated_10': {'min_count': 10, 'categories': None},
'appreciated_25': {'min_count': 25, 'categories': None},
'appreciated_50': {'min_count': 50, 'categories': None},
# Monthly champion and other badges have complex criteria, award randomly
'monthly_champion': {'min_count': 10, 'categories': None},
'streak_4_weeks': {'min_count': 15, 'categories': None},
'diverse_appreciation': {'min_count': 20, 'categories': None},
}
badge_map = {badge.code: badge for badge in badges}
# Award badges to users (30% get badges)
for user in users:
if random.random() > 0.7: # 30% of users get badges
continue
# Count appreciations received by this user
received_count = Appreciation.objects.filter(
recipient_content_type=user_ct,
recipient_object_id=user.id,
status=AppreciationStatus.ACKNOWLEDGED
).count()
# Award appropriate badges
for badge_code, criteria in badge_criteria.items():
if badge_code not in badge_map:
continue
if received_count >= criteria['min_count']:
# Check if already has this badge
existing = UserBadge.objects.filter(
recipient_content_type=user_ct,
recipient_object_id=user.id,
badge=badge_map[badge_code]
).first()
if not existing:
# Random chance to award (not guaranteed even if criteria met)
if random.random() < 0.6:
user_badges.append(UserBadge(
recipient_content_type=user_ct,
recipient_object_id=user.id,
badge=badge_map[badge_code],
appreciation_count=received_count,
))
# Award badges to physicians (60% get badges)
for physician in physicians:
if random.random() > 0.6: # 60% of physicians get badges
continue
# Count appreciations received by this physician
received_count = Appreciation.objects.filter(
recipient_content_type=physician_ct,
recipient_object_id=physician.id,
status=AppreciationStatus.ACKNOWLEDGED
).count()
# Award appropriate badges
for badge_code, criteria in badge_criteria.items():
if badge_code not in badge_map:
continue
if received_count >= criteria['min_count']:
# Check if already has this badge
existing = UserBadge.objects.filter(
recipient_content_type=physician_ct,
recipient_object_id=physician.id,
badge=badge_map[badge_code]
).first()
if not existing:
# Higher chance for physicians
if random.random() < 0.7:
user_badges.append(UserBadge(
recipient_content_type=physician_ct,
recipient_object_id=physician.id,
badge=badge_map[badge_code],
appreciation_count=received_count,
))
# Bulk create user badges
UserBadge.objects.bulk_create(user_badges)
print(f" Awarded {len(user_badges)} badges to users and physicians")
return user_badges
def generate_appreciation_stats(users, physicians, hospitals):
"""Generate appreciation statistics for users and physicians"""
print("Generating appreciation statistics...")
stats = []
now = timezone.now()
# Get ContentType for User and Physician
user_ct = ContentType.objects.get_for_model(User)
physician_ct = ContentType.objects.get_for_model(Physician)
# Get current year and month
year = now.year
month = now.month
# Generate stats for users (70% have stats)
for user in users:
if random.random() > 0.7:
continue
# Generate realistic stats
received_count = random.randint(0, 30)
sent_count = random.randint(0, 50)
acknowledged_count = int(received_count * random.uniform(0.6, 1.0))
stats.append(AppreciationStats(
recipient_content_type=user_ct,
recipient_object_id=user.id,
year=year,
month=month,
hospital=user.hospital if user.hospital else random.choice(hospitals),
received_count=received_count,
sent_count=sent_count,
acknowledged_count=acknowledged_count,
hospital_rank=random.randint(1, 20) if received_count > 0 else None,
))
# Generate stats for physicians (90% have stats)
for physician in physicians:
if random.random() > 0.1: # 90% have stats
# Physicians typically receive more appreciations
received_count = random.randint(5, 50)
sent_count = random.randint(0, 20) # Physicians send less
acknowledged_count = int(received_count * random.uniform(0.7, 1.0))
stats.append(AppreciationStats(
recipient_content_type=physician_ct,
recipient_object_id=physician.id,
year=year,
month=month,
hospital=physician.hospital,
department=physician.department,
received_count=received_count,
sent_count=sent_count,
acknowledged_count=acknowledged_count,
hospital_rank=random.randint(1, 10) if received_count > 5 else None,
))
# Bulk create stats
AppreciationStats.objects.bulk_create(stats)
print(f" Generated {len(stats)} appreciation statistics")
return stats
def main():
"""Main data generation function"""
print("\n" + "="*60)
print("PX360 - Saudi-Influenced Data Generator")
print("="*60 + "\n")
# Clear existing data first
clear_existing_data()
# Create base data
hospitals = create_hospitals()
departments = create_departments(hospitals)
physicians = create_physicians(hospitals, departments)
patients = create_patients(hospitals)
create_users(hospitals)
# Get all users for assignments
users = list(User.objects.all())
# Create operational data
complaints = create_complaints(patients, hospitals, physicians, users)
inquiries = create_inquiries(patients, hospitals, users)
feedbacks = create_feedback(patients, hospitals, physicians, users)
create_survey_templates(hospitals)
create_journey_templates(hospitals)
projects = create_qi_projects(hospitals)
actions = create_px_actions(complaints, hospitals, users)
journey_instances = create_journey_instances(None, patients)
survey_instances = create_survey_instances(None, patients, physicians)
call_interactions = create_call_center_interactions(patients, hospitals, users)
social_mentions = create_social_mentions(hospitals)
physician_ratings = create_physician_monthly_ratings(physicians)
# Get appreciation categories and badges (should be seeded)
categories = list(AppreciationCategory.objects.all())
badges = list(AppreciationBadge.objects.all())
if not categories or not badges:
print("\n" + "!"*60)
print("WARNING: Appreciation categories or badges not found!")
print("Please run: python manage.py seed_appreciation_data")
print("!"*60 + "\n")
# Create appreciation data
if categories and badges:
appreciations = create_appreciations(users, physicians, hospitals, departments, categories)
user_badges = award_badges(badges, users, physicians, categories)
# Stats are auto-generated by signals, so we don't need to create them manually
appreciation_stats = list(AppreciationStats.objects.all())
else:
appreciations = []
user_badges = []
appreciation_stats = []
print("\n" + "="*60)
print("Data Generation Complete!")
print("="*60)
print(f"\nCreated:")
print(f" - {len(hospitals)} Hospitals")
print(f" - {len(departments)} Departments")
print(f" - {len(physicians)} Physicians")
print(f" - {len(patients)} Patients")
print(f" - {len(users)} Users")
print(f" - {len(complaints)} Complaints (2 years)")
print(f" - {len(inquiries)} Inquiries (2 years)")
print(f" - {len(feedbacks)} Feedback Items")
print(f" - {len(actions)} PX Actions")
print(f" - {len(journey_instances)} Journey Instances")
print(f" - {len(survey_instances)} Survey Instances")
print(f" - {len(call_interactions)} Call Center Interactions")
print(f" - {len(social_mentions)} Social Media Mentions")
print(f" - {len(projects)} QI Projects")
print(f" - {len(physician_ratings)} Physician Monthly Ratings")
print(f" - {len(appreciations)} Appreciations (2 years)")
print(f" - {len(user_badges)} Badges Awarded")
print(f" - {len(appreciation_stats)} Appreciation Statistics")
print(f"\nYou can now login with:")
print(f" Username: px_admin")
print(f" Password: admin123")
print(f"\nOr hospital admins:")
print(f" Username: admin_kfmc (or admin_kfsh, admin_kamc, etc.)")
print(f" Password: admin123")
print(f"\nAccess the system at: http://127.0.0.1:8000/")
print("\n")
if __name__ == '__main__':
main()