""" Saudi-influenced data generator for PX360 This script generates realistic test data for the PX360 system with: - Saudi hospital names - Arabic names for patients and staff - Saudi cities and regions - Realistic medical specializations - Sample complaints, surveys, and actions """ import os import random from datetime import datetime, timedelta import django # Setup Django os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings.dev') # Disable Celery tasks during data generation os.environ.setdefault('CELERY_TASK_ALWAYS_EAGER', 'True') django.setup() from django.contrib.auth import get_user_model from django.contrib.contenttypes.models import ContentType from django.utils import timezone from apps.accounts.models import User from apps.appreciation.models import ( Appreciation, AppreciationCategory, AppreciationBadge, UserBadge, AppreciationStats, AppreciationStatus, AppreciationVisibility, ) from apps.observations.models import ( Observation, ObservationCategory, ObservationNote, ObservationStatusLog, ObservationSeverity, ObservationStatus, ) from apps.complaints.models import Complaint, ComplaintCategory, ComplaintUpdate from apps.journeys.models import ( PatientJourneyInstance, PatientJourneyStageInstance, PatientJourneyStageTemplate, PatientJourneyTemplate, ) from apps.organizations.models import Department, Hospital, Patient, Staff from apps.projects.models import QIProject from apps.px_action_center.models import PXAction from apps.surveys.models import SurveyInstance, SurveyQuestion, SurveyResponse, SurveyTemplate # Saudi-specific data SAUDI_HOSPITALS = [ {'name': 'Alhammadi Hospital', 'name_ar': 'مستشفى الحمادي', 'city': 'Riyadh', 'code': 'HH'}, # {'name': 'King Faisal Specialist Hospital', 'name_ar': 'مستشفى الملك فيصل التخصصي', 'city': 'Riyadh', 'code': 'KFSH'}, # {'name': 'King Abdulaziz Medical City', 'name_ar': 'مدينة الملك عبدالعزيز الطبية', 'city': 'Riyadh', 'code': 'KAMC'}, # {'name': 'King Khalid University Hospital', 'name_ar': 'مستشفى الملك خالد الجامعي', 'city': 'Riyadh', 'code': 'KKUH'}, # {'name': 'King Abdullah Medical Complex', 'name_ar': 'مجمع الملك عبدالله الطبي', 'city': 'Jeddah', 'code': 'KAMC-JED'}, ] SAUDI_CITIES = ['Riyadh', 'Jeddah', 'Mecca', 'Medina', 'Dammam', 'Khobar', 'Dhahran', 'Taif', 'Buraidah', 'Tabuk'] ARABIC_FIRST_NAMES_MALE = ['محمد', 'أحمد', 'عبدالله', 'خالد', 'سعود', 'فهد', 'عبدالعزيز', 'سلطان', 'فيصل', 'عمر'] ARABIC_FIRST_NAMES_FEMALE = ['فاطمة', 'عائشة', 'مريم', 'نورة', 'سارة', 'هند', 'لطيفة', 'منى', 'ريم', 'جواهر'] ARABIC_LAST_NAMES = ['العتيبي', 'الدوسري', 'القحطاني', 'الشمري', 'الحربي', 'المطيري', 'العنزي', 'الزهراني', 'الغامدي', 'الشهري'] ENGLISH_FIRST_NAMES_MALE = ['Mohammed', 'Ahmed', 'Abdullah', 'Khalid', 'Saud', 'Fahd', 'Abdulaziz', 'Sultan', 'Faisal', 'Omar'] ENGLISH_FIRST_NAMES_FEMALE = ['Fatimah', 'Aisha', 'Maryam', 'Noura', 'Sarah', 'Hind', 'Latifa', 'Mona', 'Reem', 'Jawaher'] ENGLISH_LAST_NAMES = ['Al-Otaibi', 'Al-Dosari', 'Al-Qahtani', 'Al-Shammari', 'Al-Harbi', 'Al-Mutairi', 'Al-Anazi', 'Al-Zahrani', 'Al-Ghamdi', 'Al-Shehri'] DEPARTMENTS = [ {'name': 'Emergency Department', 'name_ar': 'قسم الطوارئ', 'code': 'ER'}, {'name': 'Outpatient Department', 'name_ar': 'قسم العيادات الخارجية', 'code': 'OPD'}, {'name': 'Internal Medicine', 'name_ar': 'الطب الباطني', 'code': 'IM'}, {'name': 'Surgery', 'name_ar': 'الجراحة', 'code': 'SURG'}, {'name': 'Pediatrics', 'name_ar': 'طب الأطفال', 'code': 'PEDS'}, {'name': 'Obstetrics & Gynecology', 'name_ar': 'النساء والولادة', 'code': 'OBGYN'}, {'name': 'Radiology', 'name_ar': 'الأشعة', 'code': 'RAD'}, {'name': 'Laboratory', 'name_ar': 'المختبر', 'code': 'LAB'}, {'name': 'Pharmacy', 'name_ar': 'الصيدلية', 'code': 'PHARM'}, {'name': 'Cardiology', 'name_ar': 'أمراض القلب', 'code': 'CARD'}, ] SPECIALIZATIONS = [ 'Internal Medicine', 'General Surgery', 'Pediatrics', 'Obstetrics & Gynecology', 'Cardiology', 'Orthopedics', 'Neurology', 'Dermatology', 'Ophthalmology', 'ENT', 'Urology', 'Nephrology', 'Gastroenterology', 'Pulmonology' ] COMPLAINT_TITLES = [ 'Long waiting time in emergency department', 'Poor communication from nursing staff', 'Delayed lab results', 'Billing discrepancy', 'Unclean patient room', 'Medication error', 'Rude behavior from reception staff', 'Difficulty scheduling appointment', 'Lost medical records', 'Inadequate pain management', ] COMPLAINT_TITLES_AR = [ 'وقت انتظار طويل في قسم الطوارئ', 'ضعف التواصل من طاقم التمريض', 'تأخر نتائج المختبر', 'خطأ في الفاتورة', 'غرفة المريض غير نظيفة', 'خطأ في الدواء', 'سلوك غير لائق من موظف الاستقبال', 'صعوبة في حجز موعد', 'فقدان السجلات الطبية', 'إدارة غير كافية للألم', ] def clear_existing_data(): """Clear all existing data from the database""" print("\n" + "="*60) print("Clearing Existing Data...") print("="*60 + "\n") from apps.feedback.models import Feedback, FeedbackAttachment, FeedbackResponse from apps.social.models import SocialMention from apps.callcenter.models import CallCenterInteraction # Delete in reverse order of dependencies print("Deleting survey instances...") SurveyResponse.objects.all().delete() SurveyInstance.objects.all().delete() print("Deleting journey instances...") PatientJourneyStageInstance.objects.all().delete() PatientJourneyInstance.objects.all().delete() print("Deleting PX actions...") PXAction.objects.all().delete() print("Deleting QI projects...") QIProject.objects.all().delete() print("Deleting social mentions...") SocialMention.objects.all().delete() print("Deleting call center interactions...") CallCenterInteraction.objects.all().delete() print("Deleting feedback...") FeedbackResponse.objects.all().delete() FeedbackAttachment.objects.all().delete() Feedback.objects.all().delete() print("Deleting complaints...") ComplaintUpdate.objects.all().delete() Complaint.objects.all().delete() print("Deleting survey templates...") SurveyQuestion.objects.all().delete() SurveyTemplate.objects.all().delete() print("Deleting journey templates...") PatientJourneyStageTemplate.objects.all().delete() PatientJourneyTemplate.objects.all().delete() print("Deleting patients...") Patient.objects.all().delete() print("Deleting physician ratings...") from apps.physicians.models import PhysicianMonthlyRating PhysicianMonthlyRating.objects.all().delete() print("Deleting staff...") Staff.objects.all().delete() print("Deleting departments...") Department.objects.all().delete() print("Deleting hospitals...") Hospital.objects.all().delete() print("Deleting users (except superusers)...") User.objects.filter(is_superuser=False).delete() print("\n✓ All existing data cleared successfully!\n") def generate_saudi_phone(): """Generate Saudi phone number""" return f"+966{random.choice(['50', '53', '54', '55', '56', '58'])}{random.randint(1000000, 9999999)}" def generate_mrn(): """Generate Medical Record Number""" return f"MRN{random.randint(100000, 999999)}" def generate_national_id(): """Generate Saudi National ID""" return f"{random.randint(1000000000, 2999999999)}" def create_hospitals(): """Create Saudi hospitals""" print("Creating hospitals...") hospitals = [] for hosp_data in SAUDI_HOSPITALS: hospital, created = Hospital.objects.get_or_create( code=hosp_data['code'], defaults={ 'name': hosp_data['name'], 'name_ar': hosp_data['name_ar'], 'city': hosp_data['city'], 'phone': generate_saudi_phone(), 'status': 'active', 'capacity': random.randint(200, 800), } ) hospitals.append(hospital) if created: print(f" Created: {hospital.name}") return hospitals def create_departments(hospitals): """Create departments for each hospital""" print("Creating departments...") departments = [] for hospital in hospitals: for dept_data in DEPARTMENTS: dept, created = Department.objects.get_or_create( hospital=hospital, code=dept_data['code'], defaults={ 'name': dept_data['name'], 'name_ar': dept_data['name_ar'], 'status': 'active', } ) departments.append(dept) if created: print(f" Created: {hospital.name} - {dept.name}") return departments def create_staff(hospitals, departments): """Create staff""" print("Creating staff...") staff = [] for i in range(50): hospital = random.choice(hospitals) dept = random.choice([d for d in departments if d.hospital == hospital]) first_name_ar = random.choice(ARABIC_FIRST_NAMES_MALE) last_name_ar = random.choice(ARABIC_LAST_NAMES) first_name = random.choice(ENGLISH_FIRST_NAMES_MALE) last_name = random.choice(ENGLISH_LAST_NAMES) staff_member, created = Staff.objects.get_or_create( license_number=f"LIC{random.randint(10000, 99999)}", defaults={ 'first_name': first_name, 'last_name': last_name, 'first_name_ar': first_name_ar, 'last_name_ar': last_name_ar, 'specialization': random.choice(SPECIALIZATIONS), 'hospital': hospital, 'department': dept, # 'phone': generate_saudi_phone(), 'status': 'active', 'employee_id': f"EMP{random.randint(10000, 99999)}", } ) staff.append(staff_member) print(f" Created {len(staff)} staff members") return staff def create_patients(hospitals): """Create patients""" print("Creating patients...") patients = [] for i in range(100): gender = random.choice(['male', 'female']) if gender == 'male': first_name_ar = random.choice(ARABIC_FIRST_NAMES_MALE) first_name = random.choice(ENGLISH_FIRST_NAMES_MALE) else: first_name_ar = random.choice(ARABIC_FIRST_NAMES_FEMALE) first_name = random.choice(ENGLISH_FIRST_NAMES_FEMALE) last_name_ar = random.choice(ARABIC_LAST_NAMES) last_name = random.choice(ENGLISH_LAST_NAMES) patient, created = Patient.objects.get_or_create( mrn=generate_mrn(), defaults={ 'first_name': first_name, 'last_name': last_name, 'first_name_ar': first_name_ar, 'last_name_ar': last_name_ar, 'national_id': generate_national_id(), 'phone': generate_saudi_phone(), 'email': f"{first_name.lower()}.{last_name.lower()}@example.com", 'gender': gender, 'date_of_birth': datetime.now().date() - timedelta(days=random.randint(365*18, 365*80)), 'city': random.choice(SAUDI_CITIES), 'primary_hospital': random.choice(hospitals), 'status': 'active', } ) patients.append(patient) print(f" Created {len(patients)} patients") return patients def create_users(hospitals): """Create system users""" print("Creating users...") from django.contrib.auth.models import Group # Create or get groups px_admin_group, _ = Group.objects.get_or_create(name='PX Admin') hospital_admin_group, _ = Group.objects.get_or_create(name='Hospital Admin') # Create PX Admin px_admin, created = User.objects.get_or_create( username='px_admin', defaults={ 'email': 'px.admin@alhammadi.sa', 'first_name': 'PX', 'last_name': 'Administrator', 'is_staff': True, 'is_superuser': True, } ) if created: px_admin.set_password('admin123') px_admin.save() px_admin.groups.add(px_admin_group) print(" Created PX Admin") # Create Hospital Admins for hospital in hospitals: user, created = User.objects.get_or_create( username=f'admin_{hospital.code.lower()}', defaults={ 'email': f'admin@{hospital.code.lower()}.sa', 'first_name': 'Hospital', 'last_name': 'Admin', 'hospital': hospital, 'is_staff': True, } ) if created: user.set_password('admin123') user.save() user.groups.add(hospital_admin_group) print(f" Created Hospital Admin for {hospital.name}") def create_complaint_categories(hospitals): """Create complaint categories""" print("Creating complaint categories...") # System-wide categories (hospital=None) system_categories = [ {'code': 'CLINICAL', 'name_en': 'Clinical Care', 'name_ar': 'الرعاية السريرية', 'order': 1}, {'code': 'STAFF', 'name_en': 'Staff Behavior', 'name_ar': 'سلوك الموظفين', 'order': 2}, {'code': 'FACILITY', 'name_en': 'Facility Issues', 'name_ar': 'مشاكل المرافق', 'order': 3}, {'code': 'WAIT_TIME', 'name_en': 'Wait Time', 'name_ar': 'وقت الانتظار', 'order': 4}, {'code': 'BILLING', 'name_en': 'Billing & Insurance', 'name_ar': 'الفوترة والتأمين', 'order': 5}, {'code': 'COMM', 'name_en': 'Communication', 'name_ar': 'التواصل', 'order': 6}, ] categories = [] # Create system-wide categories for cat_data in system_categories: category, created = ComplaintCategory.objects.get_or_create( code=cat_data['code'], hospital=None, defaults={ 'name_en': cat_data['name_en'], 'name_ar': cat_data['name_ar'], 'order': cat_data['order'], 'is_active': True, } ) categories.append(category) if created: print(f" Created system-wide category: {category.name_en}") # Create hospital-specific categories for each hospital hospital_specific_categories = [ {'code': 'ER', 'name_en': 'Emergency Services', 'name_ar': 'خدمات الطوارئ'}, {'code': 'SURGERY', 'name_en': 'Surgery Department', 'name_ar': 'قسم الجراحة'}, {'code': 'LAB', 'name_en': 'Laboratory Services', 'name_ar': 'خدمات المختبر'}, ] for hospital in hospitals: for cat_data in hospital_specific_categories: category, created = ComplaintCategory.objects.get_or_create( code=f"{cat_data['code']}_{hospital.code}", hospital=hospital, defaults={ 'name_en': cat_data['name_en'], 'name_ar': cat_data['name_ar'], 'order': random.randint(10, 20), 'is_active': True, } ) categories.append(category) if created: print(f" Created hospital category for {hospital.name}: {category.name_en}") print(f" Created {len(categories)} complaint categories") return categories def create_complaints(patients, hospitals, staff, users): """Create sample complaints with 2 years of data""" print("Creating complaints (2 years of data)...") # Get available complaint categories categories = list(ComplaintCategory.objects.filter(is_active=True)) if not categories: print(" ERROR: No complaint categories found! Please create categories first.") return [] complaints = [] now = timezone.now() # Generate complaints over 2 years (730 days) # Average 3-5 complaints per day = ~1200-1800 total for day_offset in range(730): # Random number of complaints per day (0-8, weighted towards 2-4) num_complaints = random.choices([0, 1, 2, 3, 4, 5, 6, 7, 8], weights=[5, 10, 20, 25, 20, 10, 5, 3, 2])[0] for _ in range(num_complaints): patient = random.choice(patients) hospital = patient.primary_hospital or random.choice(hospitals) created_date = now - timedelta(days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59)) # Status distribution based on age if day_offset < 7: # Last week - more open/in_progress status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[30, 40, 20, 10])[0] elif day_offset < 30: # Last month status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[10, 30, 40, 20])[0] else: # Older - mostly resolved/closed status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[2, 5, 30, 63])[0] # Select appropriate category (system-wide or hospital-specific) hospital_categories = [c for c in categories if c.hospital == hospital] system_categories_list = [c for c in categories if c.hospital is None] # Prefer hospital-specific categories if available, otherwise use system-wide available_categories = hospital_categories if hospital_categories else system_categories_list complaint = Complaint.objects.create( patient=patient, hospital=hospital, department=random.choice(hospital.departments.all()) if hospital.departments.exists() else None, staff=random.choice(staff) if random.random() > 0.5 else None, title=random.choice(COMPLAINT_TITLES), description=f"Detailed description of the complaint. Patient experienced issues during their visit.", category=random.choice(available_categories), priority=random.choice(['low', 'medium', 'high']), severity=random.choice(['low', 'medium', 'high', 'critical']), source=random.choice(['patient', 'family', 'survey', 'call_center', 'moh', 'other']), status=status, encounter_id=f"ENC{random.randint(100000, 999999)}", assigned_to=random.choice(users) if random.random() > 0.5 else None, ) # Override created_at complaint.created_at = created_date # Set resolved/closed dates if applicable if status in ['resolved', 'closed']: complaint.resolved_at = created_date + timedelta(hours=random.randint(24, 168)) complaint.resolved_by = random.choice(users) if status == 'closed': complaint.closed_at = complaint.resolved_at + timedelta(hours=random.randint(1, 48)) complaint.closed_by = random.choice(users) complaint.save() complaints.append(complaint) print(f" Created {len(complaints)} complaints over 2 years") return complaints def create_inquiries(patients, hospitals, users): """Create inquiries with 2 years of data""" print("Creating inquiries (2 years of data)...") from apps.complaints.models import Inquiry inquiries = [] now = timezone.now() inquiry_subjects = [ 'Question about appointment scheduling', 'Billing inquiry', 'Request for medical records', 'General information request', 'Pharmacy hours inquiry', 'Lab results inquiry', 'Insurance coverage question', 'Visitor policy question', 'Parking information', 'Department location inquiry', ] # Generate inquiries over 2 years (730 days) # Average 1-2 inquiries per day = ~500-700 total for day_offset in range(730): num_inquiries = random.choices([0, 1, 2, 3], weights=[30, 40, 25, 5])[0] for _ in range(num_inquiries): patient = random.choice(patients) if random.random() > 0.3 else None hospital = (patient.primary_hospital if patient else None) or random.choice(hospitals) created_date = now - timedelta(days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59)) # Status distribution based on age if day_offset < 7: # Last week status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[40, 35, 20, 5])[0] elif day_offset < 30: # Last month status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[15, 30, 40, 15])[0] else: # Older status = random.choices(['open', 'in_progress', 'resolved', 'closed'], weights=[3, 7, 40, 50])[0] inquiry = Inquiry.objects.create( patient=patient, contact_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}" if not patient else '', contact_phone=generate_saudi_phone() if not patient else '', contact_email=f"inquiry{random.randint(1000,9999)}@example.com" if not patient else '', hospital=hospital, department=random.choice(hospital.departments.all()) if hospital.departments.exists() and random.random() > 0.6 else None, subject=random.choice(inquiry_subjects), message=f"I would like to inquire about {random.choice(['appointment', 'billing', 'services', 'procedures'])}. Please provide information.", category=random.choice(['appointment', 'billing', 'medical_records', 'general', 'other']), status=status, assigned_to=random.choice(users) if random.random() > 0.5 else None, ) # Override created_at inquiry.created_at = created_date # Set response if resolved/closed if status in ['resolved', 'closed']: inquiry.response = "Thank you for your inquiry. We have addressed your question." inquiry.responded_at = created_date + timedelta(hours=random.randint(2, 72)) inquiry.responded_by = random.choice(users) inquiry.save() inquiries.append(inquiry) print(f" Created {len(inquiries)} inquiries over 2 years") return inquiries def create_feedback(patients, hospitals, staff, users): """Create sample feedback""" print("Creating feedback...") from apps.feedback.models import Feedback, FeedbackResponse feedback_titles = [ 'Excellent care from Dr. Ahmed', 'Very satisfied with the service', 'Suggestion to improve waiting area', 'Great experience at the hospital', 'Staff was very helpful and kind', 'Clean and well-maintained facility', 'Quick and efficient service', 'Appreciate the professionalism', 'Suggestion for better parking', 'Outstanding nursing care', ] feedback_messages = [ 'I had a wonderful experience. The staff was very professional and caring.', 'The doctor took time to explain everything clearly. Very satisfied.', 'I suggest adding more seating in the waiting area for better comfort.', 'Everything was excellent from registration to discharge.', 'The nurses were extremely helpful and answered all my questions.', 'The facility is very clean and well-organized.', 'I was seen quickly and the process was very smooth.', 'I appreciate the high level of professionalism shown by all staff.', 'The parking area could be improved with better signage.', 'The nursing staff provided outstanding care during my stay.', ] feedbacks = [] for i in range(40): patient = random.choice(patients) hospital = patient.primary_hospital or random.choice(hospitals) is_anonymous = random.random() < 0.2 # 20% anonymous feedback = Feedback.objects.create( patient=None if is_anonymous else patient, is_anonymous=is_anonymous, contact_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}" if is_anonymous else '', contact_email=f"anonymous{i}@example.com" if is_anonymous else '', contact_phone=generate_saudi_phone() if is_anonymous else '', hospital=hospital, department=random.choice(hospital.departments.all()) if hospital.departments.exists() and random.random() > 0.5 else None, staff=random.choice(staff) if random.random() > 0.6 else None, feedback_type=random.choice(['compliment', 'suggestion', 'general', 'inquiry']), title=random.choice(feedback_titles), message=random.choice(feedback_messages), category=random.choice(['clinical_care', 'staff_service', 'facility', 'communication', 'appointment', 'cleanliness']), rating=random.randint(3, 5) if random.random() > 0.3 else None, priority=random.choice(['low', 'medium', 'high']), sentiment=random.choice(['positive', 'neutral', 'negative']), sentiment_score=random.uniform(0.3, 1.0) if random.random() > 0.7 else None, status=random.choice(['submitted', 'reviewed', 'acknowledged', 'closed']), encounter_id=f"ENC{random.randint(100000, 999999)}" if random.random() > 0.5 else '', assigned_to=random.choice(users) if random.random() > 0.5 else None, is_featured=random.random() < 0.15, # 15% featured requires_follow_up=random.random() < 0.2, # 20% require follow-up ) # Add initial response FeedbackResponse.objects.create( feedback=feedback, response_type='note', message=f"Feedback received and logged in the system.", created_by=random.choice(users), is_internal=True, ) # Add additional responses for some feedback if feedback.status in ['reviewed', 'acknowledged', 'closed'] and random.random() > 0.5: FeedbackResponse.objects.create( feedback=feedback, response_type='response', message="Thank you for your feedback. We appreciate your input and will work to improve our services.", created_by=random.choice(users), is_internal=False, ) feedbacks.append(feedback) print(f" Created {len(feedbacks)} feedback items") return feedbacks def create_survey_templates(hospitals): """Create survey templates""" print("Creating survey templates...") # Check if templates already exist existing_count = SurveyTemplate.objects.count() if existing_count > 0: print(f" Survey templates already exist ({existing_count} found), skipping creation...") return for hospital in hospitals[:2]: # Create for first 2 hospitals # OPD Survey template = SurveyTemplate.objects.create( name=f'OPD Patient Satisfaction Survey - {hospital.code}', name_ar='استبيان رضا مرضى العيادات الخارجية', description='Survey for outpatient department visits', description_ar='استبيان لزيارات قسم العيادات الخارجية', hospital=hospital, survey_type='stage', scoring_method='average', negative_threshold=3.0, is_active=True, ) # Create questions questions_data = [ {'text': 'How would you rate your overall experience?', 'text_ar': 'كيف تقيم تجربتك الإجمالية؟', 'type': 'rating'}, {'text': 'How likely are you to recommend us?', 'text_ar': 'ما مدى احتمالية توصيتك بنا؟', 'type': 'nps'}, {'text': 'Was the staff courteous and helpful?', 'text_ar': 'هل كان الموظفون مهذبين ومتعاونين؟', 'type': 'yes_no'}, {'text': 'Any additional comments?', 'text_ar': 'أي تعليقات إضافية؟', 'type': 'textarea'}, ] for idx, q_data in enumerate(questions_data): SurveyQuestion.objects.create( survey_template=template, text=q_data['text'], text_ar=q_data['text_ar'], question_type=q_data['type'], order=idx, is_required=True if idx < 2 else False, ) print(f" Created survey template for {hospital.name}") def create_journey_templates(hospitals): """Create journey templates""" print("Creating journey templates...") for hospital in hospitals[:2]: # OPD Journey journey_template, created = PatientJourneyTemplate.objects.get_or_create( hospital=hospital, journey_type='opd', name='OPD Journey', defaults={ 'name_ar': 'رحلة العيادات الخارجية', 'is_active': True, 'is_default': True, } ) if created: # Create stages stages_data = [ {'name': 'Registration', 'name_ar': 'التسجيل', 'code': 'REG', 'trigger': 'OPD_REGISTRATION'}, {'name': 'MD Consultation', 'name_ar': 'استشارة الطبيب', 'code': 'MD', 'trigger': 'OPD_VISIT_COMPLETED'}, {'name': 'Laboratory', 'name_ar': 'المختبر', 'code': 'LAB', 'trigger': 'LAB_COMPLETED'}, {'name': 'Pharmacy', 'name_ar': 'الصيدلية', 'code': 'PHARM', 'trigger': 'PHARMACY_DISPENSED'}, ] for idx, stage_data in enumerate(stages_data): PatientJourneyStageTemplate.objects.create( journey_template=journey_template, name=stage_data['name'], name_ar=stage_data['name_ar'], code=stage_data['code'], order=idx, trigger_event_code=stage_data['trigger'], is_active=True, ) print(f" Created journey template for {hospital.name}") def create_qi_projects(hospitals): """Create QI projects""" print("Creating QI projects...") project_names = [ ('Reduce ER Wait Times', 'تقليل أوقات الانتظار في الطوارئ'), ('Improve Patient Satisfaction Scores', 'تحسين درجات رضا المرضى'), ('Enhance Medication Safety', 'تعزيز سلامة الأدوية'), ('Streamline Discharge Process', 'تبسيط عملية الخروج'), ] projects = [] for hospital in hospitals[:2]: for name_en, name_ar in project_names[:2]: project = QIProject.objects.create( name=name_en, name_ar=name_ar, description=f"Quality improvement initiative to {name_en.lower()}", hospital=hospital, status=random.choice(['active', 'pending', 'completed']), start_date=datetime.now().date() - timedelta(days=random.randint(30, 180)), target_completion_date=datetime.now().date() + timedelta(days=random.randint(30, 180)), ) projects.append(project) print(f" Created {len(projects)} QI projects") return projects def create_px_actions(complaints, hospitals, users): """Create PX actions""" print("Creating PX actions...") actions = [] for i in range(20): hospital = random.choice(hospitals) action = PXAction.objects.create( source_type=random.choice(['survey', 'complaint', 'social_media', 'call_center']), title=f"Action: {random.choice(COMPLAINT_TITLES)}", description="Action created to address patient feedback and improve experience.", hospital=hospital, department=random.choice(hospital.departments.all()) if hospital.departments.exists() else None, category=random.choice(['clinical_quality', 'patient_safety', 'service_quality', 'staff_behavior']), priority=random.choice(['low', 'medium', 'high', 'urgent']), severity=random.choice(['low', 'medium', 'high', 'critical']), status=random.choice(['open', 'in_progress', 'pending_approval', 'approved', 'closed']), assigned_to=random.choice(users) if random.random() > 0.3 else None, ) actions.append(action) print(f" Created {len(actions)} PX actions") return actions def create_journey_instances(journey_templates, patients): """Create journey instances""" print("Creating journey instances...") from apps.journeys.models import PatientJourneyTemplate templates = PatientJourneyTemplate.objects.filter(is_active=True) if not templates.exists(): print(" No journey templates found, skipping...") return [] instances = [] for i in range(20): template = random.choice(templates) patient = random.choice(patients) instance = PatientJourneyInstance.objects.create( journey_template=template, patient=patient, encounter_id=f"ENC{random.randint(100000, 999999)}", hospital=template.hospital, status=random.choice(['active', 'completed']), ) # Create stage instances for stage_template in template.stages.all(): PatientJourneyStageInstance.objects.create( journey_instance=instance, stage_template=stage_template, status=random.choice(['pending', 'completed']), ) instances.append(instance) print(f" Created {len(instances)} journey instances") return instances def create_survey_instances(survey_templates, patients, staff): """Create survey instances""" print("Creating survey instances...") from apps.surveys.models import SurveyTemplate templates = SurveyTemplate.objects.filter(is_active=True) if not templates.exists(): print(" No survey templates found, skipping...") return [] instances = [] for i in range(30): template = random.choice(templates) patient = random.choice(patients) staff_member = random.choice(staff) if random.random() > 0.3 else None instance = SurveyInstance.objects.create( survey_template=template, patient=patient, delivery_channel=random.choice(['sms', 'whatsapp', 'email']), recipient_phone=patient.phone, recipient_email=patient.email, status=random.choice(['sent', 'completed']), sent_at=timezone.now() - timedelta(days=random.randint(1, 30)), metadata={'staff_id': str(staff_member.id)} if staff_member else {}, ) # If completed, add responses if instance.status == 'completed': instance.completed_at = timezone.now() - timedelta(days=random.randint(0, 29)) for question in template.questions.all(): if question.question_type in ['rating', 'likert']: SurveyResponse.objects.create( survey_instance=instance, question=question, numeric_value=random.randint(1, 5), ) elif question.question_type == 'nps': SurveyResponse.objects.create( survey_instance=instance, question=question, numeric_value=random.randint(0, 10), ) instance.calculate_score() instance.save() instances.append(instance) print(f" Created {len(instances)} survey instances") return instances def create_call_center_interactions(patients, hospitals, users): """Create call center interactions""" print("Creating call center interactions...") from apps.callcenter.models import CallCenterInteraction interactions = [] for i in range(25): patient = random.choice(patients) hospital = patient.primary_hospital or random.choice(hospitals) interaction = CallCenterInteraction.objects.create( patient=patient, hospital=hospital, agent=random.choice(users) if random.random() > 0.3 else None, call_type=random.choice(['inquiry', 'complaint', 'appointment', 'follow_up', 'feedback']), subject=f"Call regarding {random.choice(['appointment', 'billing', 'test results', 'medication'])}", notes="Patient called with inquiry. Issue resolved during call.", satisfaction_rating=random.randint(1, 5), wait_time_seconds=random.randint(30, 600), call_duration_seconds=random.randint(120, 900), resolved=random.choice([True, False]), ) interactions.append(interaction) print(f" Created {len(interactions)} call center interactions") return interactions def create_social_mentions(hospitals): """Create social media mentions""" print("Creating social media mentions...") from apps.social.models import SocialMention mentions = [] for i in range(15): hospital = random.choice(hospitals) mention = SocialMention.objects.create( platform=random.choice(['twitter', 'facebook', 'instagram']), post_url=f"https://twitter.com/user/status/{random.randint(1000000, 9999999)}", post_id=f"POST{random.randint(100000, 999999)}", author_username=f"user{random.randint(100, 999)}", author_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}", content=f"Great experience at {hospital.name}! The staff was very professional.", hospital=hospital, sentiment=random.choice(['positive', 'neutral', 'negative']), sentiment_score=random.uniform(-1, 1), likes_count=random.randint(0, 100), shares_count=random.randint(0, 50), comments_count=random.randint(0, 30), posted_at=timezone.now() - timedelta(days=random.randint(1, 30)), ) mentions.append(mention) print(f" Created {len(mentions)} social media mentions") return mentions def create_staff_monthly_ratings(staff): """Create staff monthly ratings for last 6 months""" print("Creating staff monthly ratings...") from apps.physicians.models import PhysicianMonthlyRating from decimal import Decimal ratings = [] now = datetime.now() # Generate ratings for last 6 months for staff_member in staff: for months_ago in range(6): target_date = now - timedelta(days=30 * months_ago) year = target_date.year month = target_date.month # Generate realistic ratings (mostly good, some variation) base_rating = random.uniform(3.5, 4.8) total_surveys = random.randint(5, 25) # Calculate sentiment counts based on rating if base_rating >= 4.0: positive_count = int(total_surveys * random.uniform(0.7, 0.9)) negative_count = int(total_surveys * random.uniform(0.05, 0.15)) elif base_rating >= 3.0: positive_count = int(total_surveys * random.uniform(0.4, 0.6)) negative_count = int(total_surveys * random.uniform(0.15, 0.3)) else: positive_count = int(total_surveys * random.uniform(0.2, 0.4)) negative_count = int(total_surveys * random.uniform(0.3, 0.5)) neutral_count = total_surveys - positive_count - negative_count rating, created = PhysicianMonthlyRating.objects.get_or_create( physician=staff_member, year=year, month=month, defaults={ 'average_rating': Decimal(str(round(base_rating, 2))), 'total_surveys': total_surveys, 'positive_count': positive_count, 'neutral_count': neutral_count, 'negative_count': negative_count, 'md_consult_rating': Decimal(str(round(base_rating + random.uniform(-0.3, 0.3), 2))), 'metadata': { 'generated': True, 'generated_at': now.isoformat() } } ) ratings.append(rating) print(f" Created {len(ratings)} physician monthly ratings") # Update rankings for each month print(" Updating physician rankings...") from apps.physicians.models import PhysicianMonthlyRating from apps.organizations.models import Hospital, Department # Get unique year-month combinations periods = PhysicianMonthlyRating.objects.values_list('year', 'month').distinct() for year, month in periods: # Update hospital rankings hospitals = Hospital.objects.filter(status='active') for hospital in hospitals: hospital_ratings = PhysicianMonthlyRating.objects.filter( physician__hospital=hospital, year=year, month=month ).order_by('-average_rating') for rank, rating in enumerate(hospital_ratings, start=1): rating.hospital_rank = rank rating.save(update_fields=['hospital_rank']) # Update department rankings departments = Department.objects.filter(status='active') for department in departments: dept_ratings = PhysicianMonthlyRating.objects.filter( physician__department=department, year=year, month=month ).order_by('-average_rating') for rank, rating in enumerate(dept_ratings, start=1): rating.department_rank = rank rating.save(update_fields=['department_rank']) print(" ✓ Rankings updated successfully") return ratings def create_appreciations(users, physicians, hospitals, departments, categories): """Create appreciations with 2 years of historical data""" print("Creating appreciations (2 years of data)...") # Get ContentType for User and Physician user_ct = ContentType.objects.get_for_model(User) physician_ct = ContentType.objects.get_for_model(Physician) # Message templates for generating realistic appreciations message_templates_en = [ "Thank you for {action}. Your {quality} made a real difference in our patient's care.", "I want to express my sincere appreciation for {action}. Your {quality} is truly exceptional.", "Outstanding work! Your {action} and {quality} have not gone unnoticed.", "Grateful for your {action}. The {quality} you demonstrate every day inspires us all.", "A big thank you for {action}. Your {quality} sets an excellent example.", "Exceptional job on {action}. Your {quality} is invaluable to our team.", "Words cannot express how much I appreciate your {action}. Your {quality} shines through.", "Thank you for going above and beyond with {action}. Your {quality} makes our hospital better.", "Deeply grateful for your {action}. The {quality} you show is remarkable.", "Your {action} has made a significant impact. Your {quality} is truly appreciated.", ] message_templates_ar = [ "شكراً لك على {action}. {quality} الخاص بك أحدث فرقاً حقيقياً في رعاية مرضانا.", "أود أن أعرب عن تقديري الخالص لـ {action}. {quality} استثنائي حقاً.", "عمل رائع! {action} و{quality} لم يمرا مرور الكرام.", "ممتن لـ {action}. {quality} الذي تظهره كل يوم يلهمنا جميعاً.", "شكراً جزيلاً على {action}. {quality} يضع مثالاً ممتازاً.", "عمل استثنائي في {action}. {quality} لا يقدر بثمن لفريقنا.", "الكلمات لا تعبر عن مدى تقديري لـ {action}. {quality} يظهر بوضوح.", "شكراً لتجاوز التوقعات مع {action}. {quality} يجعل مستشفانا أفضل.", "عميق الامتنان لـ {action}. {quality} الذي تظهره مذهل.", "لقد حدث {action} تأثيراً كبيراً. {quality} حقاً مقدر.", ] actions = [ "providing excellent patient care", "outstanding teamwork", "quick response in emergency", "thorough diagnosis", "compassionate patient interaction", "efficient workflow management", "mentoring junior staff", "innovative solution implementation", "attention to detail", "going the extra mile", "maintaining patient safety", "clear communication", "timely treatment", "excellent bedside manner", "professional conduct", ] qualities = [ "professionalism", "dedication", "expertise", "compassion", "attention to detail", "efficiency", "leadership", "teamwork", "reliability", "positive attitude", "patience", "kindness", "commitment", "excellence", "integrity", ] appreciations = [] now = timezone.now() # Weighted category distribution category_weights = { 'excellent_care': 30, 'team_player': 20, 'going_extra_mile': 15, 'positive_attitude': 12, 'leadership': 10, 'innovation': 8, 'reliability': 3, 'mentorship': 2, } # Create category code mapping category_map = {cat.code: cat for cat in categories} # Generate appreciations over 2 years (730 days) # Average 1-2 appreciations per day = ~800-1200 total for day_offset in range(730): # Recency bias: more appreciations in recent months recency_factor = max(0.5, 1.0 - (day_offset / 1460)) # 0.5 to 1.0 # Number of appreciations per day (weighted by recency) base_count = random.choices([0, 1, 2], weights=[30, 50, 20])[0] num_appreciations = max(0, int(base_count * recency_factor)) for _ in range(num_appreciations): # Select sender (users only - users send appreciations) sender = random.choice(users) # Select recipient (70% physician, 30% user) is_physician_recipient = random.random() < 0.7 if is_physician_recipient: recipient = random.choice(physicians) recipient_ct = physician_ct else: # User recipients (excluding sender) potential_recipients = [u for u in users if u.id != sender.id] if not potential_recipients: continue recipient = random.choice(potential_recipients) recipient_ct = user_ct # Ensure sender ≠ recipient if sender.id == recipient.id: continue # Determine hospital context if is_physician_recipient: hospital = recipient.hospital else: hospital = recipient.hospital if recipient.hospital else sender.hospital if not hospital: continue # Determine department context department = None if is_physician_recipient and recipient.department: department = recipient.department elif random.random() < 0.3: # Some appreciations have department context hospital_depts = [d for d in departments if d.hospital == hospital] if hospital_depts: department = random.choice(hospital_depts) # Select category (weighted distribution) category_codes = list(category_map.keys()) weights = [category_weights[code] for code in category_codes] category_code = random.choices(category_codes, weights=weights, k=1)[0] category = category_map.get(category_code) if not category: continue # Generate message action = random.choice(actions) quality = random.choice(qualities) message_en = random.choice(message_templates_en).format(action=action, quality=quality) message_ar = random.choice(message_templates_ar).format(action=action, quality=quality) # Select visibility (40% private, 25% dept, 25% hospital, 10% public) visibility = random.choices( list(AppreciationVisibility.values), weights=[40, 25, 25, 10], k=1 )[0] # Determine status based on age if day_offset < 1: # Last 24 hours status = random.choices( list(AppreciationStatus.values), weights=[20, 50, 30], # draft, sent, acknowledged k=1 )[0] elif day_offset < 7: # Last week status = random.choices( list(AppreciationStatus.values), weights=[5, 40, 55], k=1 )[0] else: # Older status = random.choices( list(AppreciationStatus.values), weights=[1, 10, 89], k=1 )[0] # Calculate timestamps created_date = now - timedelta( days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59) ) sent_at = None acknowledged_at = None if status != AppreciationStatus.DRAFT: # Sent time: 0-24 hours after creation (for older appreciations) if day_offset < 1: sent_delay = random.randint(0, 23) else: sent_delay = random.randint(1, 24) sent_at = created_date + timedelta(hours=sent_delay) if status == AppreciationStatus.ACKNOWLEDGED: # Acknowledged time: 1-72 hours after sent acknowledge_delay = random.randint(1, 72) acknowledged_at = sent_at + timedelta(hours=acknowledge_delay) # Anonymous option (15% anonymous) is_anonymous = random.random() < 0.15 # Create appreciation appreciation = Appreciation( sender=sender if not is_anonymous else None, recipient_content_type=recipient_ct, recipient_object_id=recipient.id, hospital=hospital, department=department, category=category, message_en=message_en, message_ar=message_ar, visibility=visibility, status=status, is_anonymous=is_anonymous, sent_at=sent_at, acknowledged_at=acknowledged_at, ) # Override created_at for historical data appreciation.created_at = created_date appreciation.save() appreciations.append(appreciation) print(f" Created {len(appreciations)} appreciations over 2 years") return appreciations def award_badges(badges, users, physicians, categories): """Award badges to users and physicians based on appreciations""" print("Awarding badges...") user_badges = [] # Get ContentType for User and Physician user_ct = ContentType.objects.get_for_model(User) physician_ct = ContentType.objects.get_for_model(Physician) # Badge criteria mapping (using codes from seed command) badge_criteria = { 'first_appreciation': {'min_count': 1, 'categories': None}, 'appreciated_5': {'min_count': 5, 'categories': None}, 'appreciated_10': {'min_count': 10, 'categories': None}, 'appreciated_25': {'min_count': 25, 'categories': None}, 'appreciated_50': {'min_count': 50, 'categories': None}, # Monthly champion and other badges have complex criteria, award randomly 'monthly_champion': {'min_count': 10, 'categories': None}, 'streak_4_weeks': {'min_count': 15, 'categories': None}, 'diverse_appreciation': {'min_count': 20, 'categories': None}, } badge_map = {badge.code: badge for badge in badges} # Award badges to users (30% get badges) for user in users: if random.random() > 0.7: # 30% of users get badges continue # Count appreciations received by this user received_count = Appreciation.objects.filter( recipient_content_type=user_ct, recipient_object_id=user.id, status=AppreciationStatus.ACKNOWLEDGED ).count() # Award appropriate badges for badge_code, criteria in badge_criteria.items(): if badge_code not in badge_map: continue if received_count >= criteria['min_count']: # Check if already has this badge existing = UserBadge.objects.filter( recipient_content_type=user_ct, recipient_object_id=user.id, badge=badge_map[badge_code] ).first() if not existing: # Random chance to award (not guaranteed even if criteria met) if random.random() < 0.6: user_badges.append(UserBadge( recipient_content_type=user_ct, recipient_object_id=user.id, badge=badge_map[badge_code], appreciation_count=received_count, )) # Award badges to physicians (60% get badges) for physician in physicians: if random.random() > 0.6: # 60% of physicians get badges continue # Count appreciations received by this physician received_count = Appreciation.objects.filter( recipient_content_type=physician_ct, recipient_object_id=physician.id, status=AppreciationStatus.ACKNOWLEDGED ).count() # Award appropriate badges for badge_code, criteria in badge_criteria.items(): if badge_code not in badge_map: continue if received_count >= criteria['min_count']: # Check if already has this badge existing = UserBadge.objects.filter( recipient_content_type=physician_ct, recipient_object_id=physician.id, badge=badge_map[badge_code] ).first() if not existing: # Higher chance for physicians if random.random() < 0.7: user_badges.append(UserBadge( recipient_content_type=physician_ct, recipient_object_id=physician.id, badge=badge_map[badge_code], appreciation_count=received_count, )) # Bulk create user badges UserBadge.objects.bulk_create(user_badges) print(f" Awarded {len(user_badges)} badges to users and physicians") return user_badges def generate_appreciation_stats(users, physicians, hospitals): """Generate appreciation statistics for users and physicians""" print("Generating appreciation statistics...") stats = [] now = timezone.now() # Get ContentType for User and Physician user_ct = ContentType.objects.get_for_model(User) physician_ct = ContentType.objects.get_for_model(Physician) # Get current year and month year = now.year month = now.month # Generate stats for users (70% have stats) for user in users: if random.random() > 0.7: continue # Generate realistic stats received_count = random.randint(0, 30) sent_count = random.randint(0, 50) acknowledged_count = int(received_count * random.uniform(0.6, 1.0)) stats.append(AppreciationStats( recipient_content_type=user_ct, recipient_object_id=user.id, year=year, month=month, hospital=user.hospital if user.hospital else random.choice(hospitals), received_count=received_count, sent_count=sent_count, acknowledged_count=acknowledged_count, hospital_rank=random.randint(1, 20) if received_count > 0 else None, )) # Generate stats for physicians (90% have stats) for physician in physicians: if random.random() > 0.1: # 90% have stats # Physicians typically receive more appreciations received_count = random.randint(5, 50) sent_count = random.randint(0, 20) # Physicians send less acknowledged_count = int(received_count * random.uniform(0.7, 1.0)) stats.append(AppreciationStats( recipient_content_type=physician_ct, recipient_object_id=physician.id, year=year, month=month, hospital=physician.hospital, department=physician.department, received_count=received_count, sent_count=sent_count, acknowledged_count=acknowledged_count, hospital_rank=random.randint(1, 10) if received_count > 5 else None, )) # Bulk create stats AppreciationStats.objects.bulk_create(stats) print(f" Generated {len(stats)} appreciation statistics") return stats def create_observations(hospitals, departments, users): """Create observations with 2 years of historical data""" print("Creating observations (2 years of data)...") # Get observation categories (should be seeded) obs_categories = list(ObservationCategory.objects.filter(is_active=True)) if not obs_categories: print(" WARNING: No observation categories found. Run: python manage.py seed_observation_categories") return [] # Observation descriptions observation_descriptions = [ "Noticed a wet floor near the elevator without any warning signs. This could be a slip hazard for patients and visitors.", "Observed expired hand sanitizer in the dispenser near the main entrance. The expiration date was 3 months ago.", "Fire extinguisher in corridor B appears to be missing its inspection tag. Last visible inspection was over a year ago.", "Patient call button in room 205 is not functioning properly. Patient had to wait for assistance.", "Medication cart was left unattended in the hallway for approximately 15 minutes during shift change.", "Emergency exit sign on the 3rd floor is not illuminated. This could be a safety concern during power outages.", "Observed staff member not wearing proper PPE while handling biohazard materials.", "Temperature in the medication storage room seems higher than normal. Thermometer shows 28°C.", "Wheelchair in the lobby has a broken wheel lock mechanism. Could be dangerous for patients.", "Noticed a strong chemical smell in the laboratory area. Ventilation may not be working properly.", "Patient identification wristband was found on the floor in the waiting area.", "Sharps container in treatment room 3 is overfilled and needs immediate replacement.", "Observed water leak from ceiling tiles in the radiology waiting area.", "Emergency shower station in the lab has not been tested recently according to the log.", "Noticed outdated patient safety posters in the pediatric ward.", ] observation_titles = [ "Wet floor hazard", "Expired sanitizer", "Fire safety concern", "Equipment malfunction", "Medication security", "Emergency signage issue", "PPE compliance", "Temperature control", "Equipment maintenance", "Ventilation concern", "Patient safety", "Waste disposal", "Facility maintenance", "Safety equipment", "Signage update needed", ] locations = [ "Main Entrance", "Emergency Department", "ICU", "Pediatric Ward", "Surgery Floor", "Radiology Department", "Laboratory", "Pharmacy", "Cafeteria", "Parking Garage", "Outpatient Clinic", "Rehabilitation Center", "Administration Building", "Staff Lounge", "Patient Rooms Floor 2", "Patient Rooms Floor 3", "Waiting Area", "Reception", ] observations = [] now = timezone.now() # Generate observations over 2 years (730 days) # Average 1-3 observations per day for day_offset in range(730): num_observations = random.choices([0, 1, 2, 3, 4], weights=[20, 35, 30, 10, 5])[0] for _ in range(num_observations): hospital = random.choice(hospitals) hospital_depts = [d for d in departments if d.hospital == hospital] created_date = now - timedelta( days=day_offset, hours=random.randint(0, 23), minutes=random.randint(0, 59) ) # Status distribution based on age if day_offset < 7: # Last week status = random.choices( [ObservationStatus.NEW, ObservationStatus.TRIAGED, ObservationStatus.ASSIGNED, ObservationStatus.IN_PROGRESS, ObservationStatus.RESOLVED, ObservationStatus.CLOSED], weights=[25, 20, 20, 20, 10, 5] )[0] elif day_offset < 30: # Last month status = random.choices( [ObservationStatus.NEW, ObservationStatus.TRIAGED, ObservationStatus.ASSIGNED, ObservationStatus.IN_PROGRESS, ObservationStatus.RESOLVED, ObservationStatus.CLOSED], weights=[5, 10, 15, 20, 30, 20] )[0] else: # Older status = random.choices( [ObservationStatus.NEW, ObservationStatus.TRIAGED, ObservationStatus.ASSIGNED, ObservationStatus.IN_PROGRESS, ObservationStatus.RESOLVED, ObservationStatus.CLOSED, ObservationStatus.REJECTED, ObservationStatus.DUPLICATE], weights=[2, 3, 5, 5, 40, 40, 3, 2] )[0] # Severity distribution severity = random.choices( [ObservationSeverity.LOW, ObservationSeverity.MEDIUM, ObservationSeverity.HIGH, ObservationSeverity.CRITICAL], weights=[30, 45, 20, 5] )[0] # Anonymous vs identified (60% anonymous) is_anonymous = random.random() < 0.6 # Generate tracking code import secrets tracking_code = f"OBS-{secrets.token_hex(3).upper()}" observation = Observation( tracking_code=tracking_code, category=random.choice(obs_categories), title=random.choice(observation_titles), description=random.choice(observation_descriptions), severity=severity, location_text=random.choice(locations), incident_datetime=created_date - timedelta(hours=random.randint(0, 48)), reporter_staff_id=f"EMP{random.randint(1000, 9999)}" if not is_anonymous else '', reporter_name=f"{random.choice(ENGLISH_FIRST_NAMES_MALE)} {random.choice(ENGLISH_LAST_NAMES)}" if not is_anonymous else '', reporter_phone=generate_saudi_phone() if not is_anonymous and random.random() > 0.5 else '', reporter_email=f"staff{random.randint(100, 999)}@alhammadi.sa" if not is_anonymous and random.random() > 0.5 else '', status=status, assigned_department=random.choice(hospital_depts) if hospital_depts and status not in [ObservationStatus.NEW] else None, assigned_to=random.choice(users) if status in [ObservationStatus.ASSIGNED, ObservationStatus.IN_PROGRESS, ObservationStatus.RESOLVED, ObservationStatus.CLOSED] and random.random() > 0.3 else None, ) # Set timestamps based on status if status not in [ObservationStatus.NEW]: observation.triaged_at = created_date + timedelta(hours=random.randint(1, 24)) observation.triaged_by = random.choice(users) if status in [ObservationStatus.RESOLVED, ObservationStatus.CLOSED]: observation.resolved_at = created_date + timedelta(hours=random.randint(24, 168)) if status == ObservationStatus.CLOSED: observation.closed_at = (observation.resolved_at or created_date) + timedelta(hours=random.randint(1, 48)) observation.save() # Override created_at Observation.objects.filter(pk=observation.pk).update(created_at=created_date) # Add status log entries if status != ObservationStatus.NEW: ObservationStatusLog.objects.create( observation=observation, from_status=ObservationStatus.NEW, to_status=ObservationStatus.TRIAGED, changed_by=random.choice(users), comment="Observation triaged and categorized." ) if status in [ObservationStatus.ASSIGNED, ObservationStatus.IN_PROGRESS, ObservationStatus.RESOLVED, ObservationStatus.CLOSED]: ObservationStatusLog.objects.create( observation=observation, from_status=ObservationStatus.TRIAGED, to_status=ObservationStatus.ASSIGNED, changed_by=random.choice(users), comment="Assigned to responsible department." ) if status in [ObservationStatus.RESOLVED, ObservationStatus.CLOSED]: ObservationStatusLog.objects.create( observation=observation, from_status=ObservationStatus.IN_PROGRESS if status != ObservationStatus.RESOLVED else ObservationStatus.ASSIGNED, to_status=ObservationStatus.RESOLVED, changed_by=random.choice(users), comment="Issue has been addressed and resolved." ) # Add internal notes for some observations if random.random() > 0.6: ObservationNote.objects.create( observation=observation, note="Initial assessment completed. Following up with relevant department.", created_by=random.choice(users), is_internal=True ) observations.append(observation) print(f" Created {len(observations)} observations over 2 years") return observations def main(): """Main data generation function""" print("\n" + "="*60) print("PX360 - Saudi-Influenced Data Generator") print("="*60 + "\n") # Clear existing data first # clear_existing_data() # Create base data # hospitals = create_hospitals() hospitals = Hospital.objects.all() departments = create_departments(hospitals) staff = create_staff(hospitals, departments) patients = create_patients(hospitals) # create_users(hospitals) # Get all users for assignments # users = list(User.objects.all()) # Create complaint categories first # categories = create_complaint_categories(hospitals) # Create operational data # complaints = create_complaints(patients, hospitals, physicians, users) # inquiries = create_inquiries(patients, hospitals, users) # feedbacks = create_feedback(patients, hospitals, physicians, users) # create_survey_templates(hospitals) # create_journey_templates(hospitals) # projects = create_qi_projects(hospitals) # actions = create_px_actions(complaints, hospitals, users) # journey_instances = create_journey_instances(None, patients) # survey_instances = create_survey_instances(None, patients, physicians) # call_interactions = create_call_center_interactions(patients, hospitals, users) # social_mentions = create_social_mentions(hospitals) # physician_ratings = create_physician_monthly_ratings(physicians) print("\n" + "="*60) print("Data Generation Complete!") print("="*60) print(f"\nCreated:") print(f" - {len(hospitals)} Hospitals") print(f" - {len(departments)} Departments") print(f" - {len(staff)} Staff") print(f" - {len(patients)} Patients") # print(f" - {len(users)} Users") # print(f" - {len(complaints)} Complaints (2 years)") # print(f" - {len(inquiries)} Inquiries (2 years)") # print(f" - {len(feedbacks)} Feedback Items") # print(f" - {len(actions)} PX Actions") # print(f" - {len(journey_instances)} Journey Instances") # print(f" - {len(survey_instances)} Survey Instances") # print(f" - {len(call_interactions)} Call Center Interactions") # print(f" - {len(social_mentions)} Social Media Mentions") # print(f" - {len(projects)} QI Projects") # print(f" - {len(staff_ratings)} Staff Monthly Ratings") # print(f" - {len(appreciations)} Appreciations (2 years)") # print(f" - {len(user_badges)} Badges Awarded") # print(f" - {len(appreciation_stats)} Appreciation Statistics") # print(f" - {len(observations)} Observations (2 years)") print(f"\nYou can now login with:") print(f" Username: px_admin") print(f" Password: admin123") print(f"\nOr hospital admins:") print(f" Username: admin_kfmc (or admin_kfsh, admin_kamc, etc.)") print(f" Password: admin123") print(f"\nAccess the system at: http://127.0.0.1:8000/") print("\n") if __name__ == '__main__': main()