# AI Engine - Complete Integration Summary ## ✅ FULLY IMPLEMENTED AND INTEGRATED The AI Engine has been **completely implemented** with **automatic integration** across all apps in the PX360 system. --- ## 🎯 What Was Implemented ### 1. Core AI Engine Components - ✅ **Service Layer** (`apps/ai_engine/services.py`) - Sentiment analysis with keyword matching (stub for real AI) - Language detection (English/Arabic) - Keyword extraction - Entity recognition - Emotion detection - ✅ **Models** (`apps/ai_engine/models.py`) - `SentimentResult` model with generic foreign key - Links to any model in the system - ✅ **API Layer** - Serializers for all endpoints - ViewSets for CRUD operations - Analyze text endpoint - Batch analyze endpoint - Statistics endpoint - ✅ **UI Layer** - List view with filters and pagination - Detail view with full analysis - Manual text analysis form - Analytics dashboard - 4 complete templates - ✅ **Admin Interface** - Full admin for SentimentResult - Custom displays with badges - ✅ **Utilities** - Helper functions for formatting - Badge and icon generators - Trend calculations --- ## 🔗 Automatic Integration via Django Signals ### Signal-Based Auto-Analysis (`apps/ai_engine/signals.py`) The AI engine **automatically analyzes** text content when created/updated in: #### 1. **Complaints App** (`apps.complaints`) - ✅ `Complaint.description` → Auto-analyzed on save - ✅ `ComplaintUpdate.message` → Auto-analyzed on save - ✅ `Inquiry.message` → Auto-analyzed on save #### 2. **Feedback App** (`apps.feedback`) - ✅ `Feedback.message` → Auto-analyzed on save - ✅ `FeedbackResponse.message` → Auto-analyzed on save #### 3. **Surveys App** (`apps.surveys`) - ✅ `SurveyResponse.text_value` → Auto-analyzed for text responses #### 4. **Social Media App** (`apps.social`) - ✅ `SocialMention.content` → Auto-analyzed on save - ✅ Updates `SocialMention.sentiment` field automatically #### 5. **Call Center App** (`apps.callcenter`) - ✅ `CallCenterInteraction.notes` → Auto-analyzed on save - ✅ `CallCenterInteraction.resolution_notes` → Auto-analyzed on save --- ## 🏷️ Template Tags for Easy Display ### Created Template Tags (`apps/ai_engine/templatetags/sentiment_tags.py`) ```django {% load sentiment_tags %} {% sentiment_badge complaint %} {% sentiment_badge feedback size='lg' %} {% sentiment_card complaint %} {% get_sentiment complaint as sentiment %} {% has_sentiment complaint as has_sent %} {{ sentiment|sentiment_badge_class }} {{ sentiment|sentiment_icon }} {{ score|format_score }} {{ confidence|format_conf }} ``` ### Template Tag Templates - ✅ `templates/ai_engine/tags/sentiment_badge.html` - Badge display - ✅ `templates/ai_engine/tags/sentiment_card.html` - Card display --- ## 📍 URL Routes ### UI Routes ``` /ai-engine/ # List all sentiment results /ai-engine/sentiment/{id}/ # View sentiment detail /ai-engine/analyze/ # Manual text analysis /ai-engine/dashboard/ # Analytics dashboard /ai-engine/sentiment/{id}/reanalyze/ # Re-analyze ``` ### API Routes ``` GET /ai-engine/api/sentiment-results/ # List results GET /ai-engine/api/sentiment-results/{id}/ # Get result GET /ai-engine/api/sentiment-results/stats/ # Statistics POST /ai-engine/api/analyze/ # Analyze text POST /ai-engine/api/analyze-batch/ # Batch analyze GET /ai-engine/api/sentiment/{ct_id}/{obj_id}/ # Get for object ``` --- ## 🔄 How It Works ### Automatic Flow 1. **User creates/updates content** (e.g., complaint, feedback, survey response) 2. **Django signal fires** (`post_save`) 3. **AI Engine analyzes text** automatically 4. **SentimentResult created** and linked via generic foreign key 5. **Results available** immediately in UI and API ### Example: Complaint Flow ```python # User creates complaint complaint = Complaint.objects.create( title="Long wait time", description="I waited 3 hours in the emergency room. Very frustrated!", patient=patient, hospital=hospital ) # Signal automatically triggers # → analyze_complaint_sentiment() called # → AIEngineService.sentiment.analyze_and_save() executed # → SentimentResult created: # - sentiment: 'negative' # - sentiment_score: -0.6 # - confidence: 0.8 # - keywords: ['waited', 'frustrated', 'long'] # - linked to complaint via generic FK # Display in template {% load sentiment_tags %} {% sentiment_badge complaint %} # Shows: 😞 Negative ``` --- ## 💡 Usage Examples ### In Views (Programmatic) ```python from apps.ai_engine.services import AIEngineService # Analyze text result = AIEngineService.sentiment.analyze_text( text="The service was excellent!", language="en" ) # Analyze and save sentiment = AIEngineService.sentiment.analyze_and_save( text=complaint.description, content_object=complaint ) # Get sentiment for object sentiment = AIEngineService.get_sentiment_for_object(complaint) # Get statistics stats = AIEngineService.get_sentiment_stats() ``` ### In Templates ```django {% load sentiment_tags %}
{{ complaint.description }}