28 lines
1016 B
Python
28 lines
1016 B
Python
import pymysql
|
|
from sqlalchemy import create_engine
|
|
import pandas as pd
|
|
|
|
# Database connection
|
|
engine = create_engine("mysql+pymysql://root:Kfsh&rc9788@localhost/car2db_01112024")
|
|
|
|
try:
|
|
# Load car_generation table
|
|
car_generation_query = "SELECT * FROM car_generation;"
|
|
car_generation_df = pd.read_sql(car_generation_query, engine)
|
|
|
|
# Load car_serie table
|
|
car_serie_query = "SELECT * FROM car_serie;"
|
|
car_serie_df = pd.read_sql(car_serie_query, engine)
|
|
|
|
# Merge tables on the appropriate column (e.g., generation_id)
|
|
merged_df = pd.merge(car_generation_df, car_serie_df, on="id_car_generation", how="inner")
|
|
|
|
# Select only the desired columns
|
|
final_df = merged_df[["id_car_serie", "id_car_model_y", "name_x", "name_y", "year_begin", "year_end"]]
|
|
|
|
# Save the filtered data to a JSON file
|
|
final_df.to_json("merged_car_data.json", orient="records", indent=4)
|
|
print("Filtered merged data saved to 'merged_car_data.json'.")
|
|
|
|
except Exception as e:
|
|
print("Error:", e) |